File size: 2,197 Bytes
ae0d22c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5c2b80
ae0d22c
 
 
 
 
 
 
 
 
e5c2b80
 
ae0d22c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d6288c
e5c2b80
 
ae0d22c
e5c2b80
 
ae0d22c
 
e5c2b80
 
2d6288c
ae0d22c
 
 
9fdd385
 
e5c2b80
 
 
 
 
 
 
ae0d22c
 
 
 
2d6288c
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
---
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: distilhubert-finetuned-gtzan
  results:
  - task:
      name: Audio Classification
      type: audio-classification
    dataset:
      name: GTZAN
      type: marsyas/gtzan
      config: all
      split: train
      args: all
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.77
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilhubert-finetuned-gtzan

This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7182
- Accuracy: 0.77

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 12
- eval_batch_size: 12
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 24
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 20
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Accuracy |
|:-------------:|:-------:|:----:|:---------------:|:--------:|
| 0.0118        | 2.6667  | 100  | 1.4117          | 0.75     |
| 0.0083        | 5.3333  | 200  | 1.4954          | 0.74     |
| 0.0057        | 8.0     | 300  | 1.6342          | 0.75     |
| 0.0047        | 10.6667 | 400  | 1.6888          | 0.77     |
| 0.0031        | 13.3333 | 500  | 1.6774          | 0.77     |
| 0.0028        | 16.0    | 600  | 1.7023          | 0.77     |
| 0.0033        | 18.6667 | 700  | 1.7182          | 0.77     |


### Framework versions

- Transformers 4.40.0
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1