clasificador-ser-estar-window-5-bert-base

This model is a fine-tuned version of google-bert/bert-base-multilingual-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9606
  • F1 Score: 0.8491
  • Recall: 0.8903
  • Precision: 0.8115
  • Roc Auc: 0.9028

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss F1 Score Recall Precision Roc Auc
No log 1.0 25 0.6774 0.7465 1.0 0.5955 0.5843
No log 2.0 50 0.5260 0.7636 0.7089 0.8276 0.8132
No log 3.0 75 0.4120 0.8393 0.9367 0.7603 0.8954
No log 4.0 100 0.4838 0.8363 0.8945 0.7852 0.8914
No log 5.0 125 0.4970 0.8267 0.8354 0.8182 0.8933
No log 6.0 150 0.5585 0.8381 0.8734 0.8054 0.8932
No log 7.0 175 0.5102 0.84 0.8861 0.7985 0.8960
No log 8.0 200 0.7016 0.8316 0.8439 0.8197 0.8892
No log 9.0 225 0.8863 0.8313 0.8523 0.8112 0.8793
No log 10.0 250 0.8687 0.8273 0.7679 0.8966 0.8876
No log 11.0 275 0.8506 0.8457 0.8903 0.8053 0.8926
No log 12.0 300 0.9160 0.8393 0.7932 0.8910 0.8951
No log 13.0 325 1.0401 0.8352 0.7806 0.8981 0.8918
No log 14.0 350 1.0209 0.8361 0.8608 0.8127 0.8913
No log 15.0 375 0.9580 0.8438 0.7975 0.8957 0.9036
No log 16.0 400 0.9606 0.8491 0.8903 0.8115 0.9028
No log 17.0 425 1.0079 0.8413 0.8945 0.7940 0.9000
No log 18.0 450 1.0042 0.8463 0.8945 0.8030 0.9015
No log 19.0 475 0.9886 0.8474 0.8903 0.8084 0.9006
0.2037 20.0 500 1.0047 0.8457 0.8903 0.8053 0.9012

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.3.2
  • Tokenizers 0.21.0
Downloads last month
32
Safetensors
Model size
167M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for joheras/clasificador-ser-estar-window-5-bert-base

Finetuned
(1760)
this model