jonatasgrosman
commited on
Commit
·
7852deb
1
Parent(s):
de62d73
update model
Browse files- README.md +54 -41
- config.json +9 -9
- pytorch_model.bin +2 -2
- special_tokens_map.json +1 -1
- vocab.json +1 -1
README.md
CHANGED
@@ -4,6 +4,7 @@ datasets:
|
|
4 |
- common_voice
|
5 |
metrics:
|
6 |
- wer
|
|
|
7 |
tags:
|
8 |
- audio
|
9 |
- automatic-speech-recognition
|
@@ -23,53 +24,68 @@ model-index:
|
|
23 |
metrics:
|
24 |
- name: Test WER
|
25 |
type: wer
|
26 |
-
value:
|
|
|
|
|
|
|
27 |
---
|
28 |
|
29 |
# Wav2Vec2-Large-XLSR-53-Finnish
|
30 |
|
31 |
-
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Finnish using the [Common Voice](https://huggingface.co/datasets/common_voice).
|
32 |
When using this model, make sure that your speech input is sampled at 16kHz.
|
33 |
|
|
|
|
|
34 |
## Usage
|
35 |
|
36 |
The model can be used directly (without a language model) as follows:
|
37 |
|
38 |
```python
|
39 |
import torch
|
40 |
-
import
|
41 |
from datasets import load_dataset
|
42 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
43 |
|
44 |
LANG_ID = "fi"
|
45 |
MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-finnish"
|
|
|
46 |
|
47 |
-
test_dataset = load_dataset("common_voice", LANG_ID, split="test[:
|
48 |
|
49 |
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
|
50 |
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
|
51 |
|
52 |
-
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
53 |
-
|
54 |
# Preprocessing the datasets.
|
55 |
# We need to read the audio files as arrays
|
56 |
def speech_file_to_array_fn(batch):
|
57 |
-
|
58 |
-
|
59 |
-
|
|
|
60 |
|
61 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
62 |
-
inputs = processor(test_dataset["speech"]
|
63 |
|
64 |
with torch.no_grad():
|
65 |
-
|
66 |
|
67 |
predicted_ids = torch.argmax(logits, dim=-1)
|
|
|
68 |
|
69 |
-
|
70 |
-
print("
|
|
|
|
|
71 |
```
|
72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
## Evaluation
|
75 |
|
@@ -77,45 +93,38 @@ The model can be evaluated as follows on the Finnish test data of Common Voice.
|
|
77 |
|
78 |
```python
|
79 |
import torch
|
80 |
-
import
|
|
|
81 |
from datasets import load_dataset, load_metric
|
82 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
83 |
-
import re
|
84 |
-
import homoglyphs as hg
|
85 |
|
86 |
LANG_ID = "fi"
|
87 |
MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-finnish"
|
88 |
DEVICE = "cuda"
|
89 |
|
90 |
-
CHARS_TO_IGNORE = [",", "?", ".", "!", "
|
91 |
-
|
|
|
92 |
|
93 |
test_dataset = load_dataset("common_voice", LANG_ID, split="test")
|
94 |
-
wer = load_metric("wer")
|
95 |
|
96 |
-
|
97 |
-
|
98 |
-
# creating regex to match language specific non valid characters
|
99 |
-
alphabet = list(hg.Languages.get_alphabet([LANG_ID]))
|
100 |
-
valid_chars = alphabet + CURRENCY_SYMBOLS
|
101 |
-
unk_regex = "[^"+re.escape("".join(valid_chars))+"\\s\\d]"
|
102 |
|
103 |
-
chars_to_ignore_regex = f
|
104 |
|
105 |
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
|
106 |
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
|
107 |
model.to(DEVICE)
|
108 |
|
109 |
-
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
110 |
-
|
111 |
# Preprocessing the datasets.
|
112 |
# We need to read the audio files as arrays
|
113 |
def speech_file_to_array_fn(batch):
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
batch["
|
119 |
return batch
|
120 |
|
121 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
@@ -123,18 +132,22 @@ test_dataset = test_dataset.map(speech_file_to_array_fn)
|
|
123 |
# Preprocessing the datasets.
|
124 |
# We need to read the audio files as arrays
|
125 |
def evaluate(batch):
|
126 |
-
|
127 |
|
128 |
-
|
129 |
-
|
130 |
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
|
135 |
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
136 |
|
137 |
-
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
|
|
|
138 |
```
|
139 |
|
140 |
-
**Test Result**:
|
|
|
|
|
|
|
|
4 |
- common_voice
|
5 |
metrics:
|
6 |
- wer
|
7 |
+
- cer
|
8 |
tags:
|
9 |
- audio
|
10 |
- automatic-speech-recognition
|
|
|
24 |
metrics:
|
25 |
- name: Test WER
|
26 |
type: wer
|
27 |
+
value: 41.60
|
28 |
+
- name: Test CER
|
29 |
+
type: cer
|
30 |
+
value: 8.23
|
31 |
---
|
32 |
|
33 |
# Wav2Vec2-Large-XLSR-53-Finnish
|
34 |
|
35 |
+
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Finnish using the [Common Voice](https://huggingface.co/datasets/common_voice) and [CSS10](https://github.com/Kyubyong/css10).
|
36 |
When using this model, make sure that your speech input is sampled at 16kHz.
|
37 |
|
38 |
+
The script used for training can be found here: https://github.com/jonatasgrosman/wav2vec2-sprint
|
39 |
+
|
40 |
## Usage
|
41 |
|
42 |
The model can be used directly (without a language model) as follows:
|
43 |
|
44 |
```python
|
45 |
import torch
|
46 |
+
import librosa
|
47 |
from datasets import load_dataset
|
48 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
49 |
|
50 |
LANG_ID = "fi"
|
51 |
MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-finnish"
|
52 |
+
SAMPLES = 5
|
53 |
|
54 |
+
test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]")
|
55 |
|
56 |
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
|
57 |
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
|
58 |
|
|
|
|
|
59 |
# Preprocessing the datasets.
|
60 |
# We need to read the audio files as arrays
|
61 |
def speech_file_to_array_fn(batch):
|
62 |
+
speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
|
63 |
+
batch["speech"] = speech_array
|
64 |
+
batch["sentence"] = batch["sentence"].upper()
|
65 |
+
return batch
|
66 |
|
67 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
68 |
+
inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
69 |
|
70 |
with torch.no_grad():
|
71 |
+
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
|
72 |
|
73 |
predicted_ids = torch.argmax(logits, dim=-1)
|
74 |
+
predicted_sentences = processor.batch_decode(predicted_ids)
|
75 |
|
76 |
+
for i, predicted_sentence in enumerate(predicted_sentences):
|
77 |
+
print("-" * 100)
|
78 |
+
print("Reference:", test_dataset[i]["sentence"])
|
79 |
+
print("Prediction:", predicted_sentence)
|
80 |
```
|
81 |
|
82 |
+
| Reference | Prediction |
|
83 |
+
| ------------- | ------------- |
|
84 |
+
| MYSTEERIMIES OLI OPPINUT MORAALINSA TARUISTA, ELOKUVISTA JA PELEISTÄ. | MYSTEERIMIES OLI OPPINUT MORALINSA TARUISTA ELOKUVISTA JA PELEISTÄ |
|
85 |
+
| ÄÄNESTIN MIETINNÖN PUOLESTA! | ÄÄNESTIN MIETINNÖN PUOLESTA |
|
86 |
+
| VAIN TUNTIA AIKAISEMMIN OLIMME MIEHENI KANSSA TUNTENEET SUURINTA ILOA. | PAIN TUNTIA AIKAISEMMIN OLIN MIEHENI KANSSA TUNTENEET SUURINTA ILAA |
|
87 |
+
| ENSIMMÄISELLE MIEHELLE SAI KOLME LASTA. | ENSIMMÄISELLE MIEHELLE SAI KOLME LASTA |
|
88 |
+
| ÄÄNESTIN MIETINNÖN PUOLESTA, SILLÄ POHJIMMILTAAN SIINÄ VASTUSTETAAN TÄTÄ SUUNTAUSTA. | ÄÄNESTIN MIETINNÖN PUOLESTA SILLÄ POHJIMMILTAAN SIINÄ VASTOTTETAAN TÄTÄ SUUNTAUSTA |
|
89 |
|
90 |
## Evaluation
|
91 |
|
|
|
93 |
|
94 |
```python
|
95 |
import torch
|
96 |
+
import re
|
97 |
+
import librosa
|
98 |
from datasets import load_dataset, load_metric
|
99 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
|
|
|
|
100 |
|
101 |
LANG_ID = "fi"
|
102 |
MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-finnish"
|
103 |
DEVICE = "cuda"
|
104 |
|
105 |
+
CHARS_TO_IGNORE = [",", "?", "¿", ".", "!", "¡", ";", ":", '""', "%", '"', "�", "ʿ", "·", "჻", "~", "՞",
|
106 |
+
"؟", "،", "।", "॥", "«", "»", "„", "“", "”", "「", "」", "‘", "’", "《", "》", "(", ")", "[", "]",
|
107 |
+
"=", "`", "_", "+", "<", ">", "…", "–", "°", "´", "ʾ", "‹", "›", "©", "®", "—", "→", "。"]
|
108 |
|
109 |
test_dataset = load_dataset("common_voice", LANG_ID, split="test")
|
|
|
110 |
|
111 |
+
wer = load_metric("wer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/wer.py
|
112 |
+
cer = load_metric("cer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/cer.py
|
|
|
|
|
|
|
|
|
113 |
|
114 |
+
chars_to_ignore_regex = f"[{re.escape(''.join(CHARS_TO_IGNORE))}]"
|
115 |
|
116 |
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
|
117 |
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
|
118 |
model.to(DEVICE)
|
119 |
|
|
|
|
|
120 |
# Preprocessing the datasets.
|
121 |
# We need to read the audio files as arrays
|
122 |
def speech_file_to_array_fn(batch):
|
123 |
+
with warnings.catch_warnings():
|
124 |
+
warnings.simplefilter("ignore")
|
125 |
+
speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
|
126 |
+
batch["speech"] = speech_array
|
127 |
+
batch["sentence"] = re.sub(chars_to_ignore_regex, "", batch["sentence"]).upper()
|
128 |
return batch
|
129 |
|
130 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
|
|
132 |
# Preprocessing the datasets.
|
133 |
# We need to read the audio files as arrays
|
134 |
def evaluate(batch):
|
135 |
+
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
136 |
|
137 |
+
with torch.no_grad():
|
138 |
+
logits = model(inputs.input_values.to(DEVICE), attention_mask=inputs.attention_mask.to(DEVICE)).logits
|
139 |
|
140 |
+
pred_ids = torch.argmax(logits, dim=-1)
|
141 |
+
batch["pred_strings"] = processor.batch_decode(pred_ids)
|
142 |
+
return batch
|
143 |
|
144 |
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
145 |
|
146 |
+
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"], chunk_size=1000)))
|
147 |
+
print("CER: {:2f}".format(100 * cer.compute(predictions=result["pred_strings"], references=result["sentence"], chunk_size=1000)))
|
148 |
```
|
149 |
|
150 |
+
**Test Result**:
|
151 |
+
|
152 |
+
- WER: 41.60%
|
153 |
+
- CER: 8.23%
|
config.json
CHANGED
@@ -1,11 +1,11 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "
|
3 |
-
"activation_dropout": 0.
|
4 |
"apply_spec_augment": true,
|
5 |
"architectures": [
|
6 |
"Wav2Vec2ForCTC"
|
7 |
],
|
8 |
-
"attention_dropout": 0.
|
9 |
"bos_token_id": 1,
|
10 |
"conv_bias": true,
|
11 |
"conv_dim": [
|
@@ -42,16 +42,16 @@
|
|
42 |
"feat_extract_activation": "gelu",
|
43 |
"feat_extract_dropout": 0.0,
|
44 |
"feat_extract_norm": "layer",
|
45 |
-
"feat_proj_dropout": 0.
|
46 |
"final_dropout": 0.0,
|
47 |
"gradient_checkpointing": true,
|
48 |
"hidden_act": "gelu",
|
49 |
-
"hidden_dropout": 0.
|
50 |
"hidden_size": 1024,
|
51 |
"initializer_range": 0.02,
|
52 |
"intermediate_size": 4096,
|
53 |
"layer_norm_eps": 1e-05,
|
54 |
-
"layerdrop": 0.
|
55 |
"mask_channel_length": 10,
|
56 |
"mask_channel_min_space": 1,
|
57 |
"mask_channel_other": 0.0,
|
@@ -62,7 +62,7 @@
|
|
62 |
"mask_time_length": 10,
|
63 |
"mask_time_min_space": 1,
|
64 |
"mask_time_other": 0.0,
|
65 |
-
"mask_time_prob": 0.
|
66 |
"mask_time_selection": "static",
|
67 |
"model_type": "wav2vec2",
|
68 |
"num_attention_heads": 16,
|
@@ -70,7 +70,7 @@
|
|
70 |
"num_conv_pos_embeddings": 128,
|
71 |
"num_feat_extract_layers": 7,
|
72 |
"num_hidden_layers": 24,
|
73 |
-
"pad_token_id":
|
74 |
"transformers_version": "4.5.0.dev0",
|
75 |
-
"vocab_size":
|
76 |
}
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "facebook/wav2vec2-large-xlsr-53",
|
3 |
+
"activation_dropout": 0.05,
|
4 |
"apply_spec_augment": true,
|
5 |
"architectures": [
|
6 |
"Wav2Vec2ForCTC"
|
7 |
],
|
8 |
+
"attention_dropout": 0.1,
|
9 |
"bos_token_id": 1,
|
10 |
"conv_bias": true,
|
11 |
"conv_dim": [
|
|
|
42 |
"feat_extract_activation": "gelu",
|
43 |
"feat_extract_dropout": 0.0,
|
44 |
"feat_extract_norm": "layer",
|
45 |
+
"feat_proj_dropout": 0.05,
|
46 |
"final_dropout": 0.0,
|
47 |
"gradient_checkpointing": true,
|
48 |
"hidden_act": "gelu",
|
49 |
+
"hidden_dropout": 0.05,
|
50 |
"hidden_size": 1024,
|
51 |
"initializer_range": 0.02,
|
52 |
"intermediate_size": 4096,
|
53 |
"layer_norm_eps": 1e-05,
|
54 |
+
"layerdrop": 0.05,
|
55 |
"mask_channel_length": 10,
|
56 |
"mask_channel_min_space": 1,
|
57 |
"mask_channel_other": 0.0,
|
|
|
62 |
"mask_time_length": 10,
|
63 |
"mask_time_min_space": 1,
|
64 |
"mask_time_other": 0.0,
|
65 |
+
"mask_time_prob": 0.05,
|
66 |
"mask_time_selection": "static",
|
67 |
"model_type": "wav2vec2",
|
68 |
"num_attention_heads": 16,
|
|
|
70 |
"num_conv_pos_embeddings": 128,
|
71 |
"num_feat_extract_layers": 7,
|
72 |
"num_hidden_layers": 24,
|
73 |
+
"pad_token_id": 0,
|
74 |
"transformers_version": "4.5.0.dev0",
|
75 |
+
"vocab_size": 34
|
76 |
}
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b3293144121790976a21ddd565d25aef7024c94309d9638e12c4e77106eb5ac2
|
3 |
+
size 1262073239
|
special_tokens_map.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"bos_token": "<s>", "eos_token": "</s>", "unk_token": "
|
|
|
1 |
+
{"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>"}
|
vocab.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"
|
|
|
1 |
+
{"<pad>": 0, "<s>": 1, "</s>": 2, "<unk>": 3, "|": 4, "J": 5, "Q": 6, "B": 7, "X": 8, "I": 9, "D": 10, "R": 11, "U": 12, "-": 13, "K": 14, "T": 15, "L": 17, "V": 18, "Ä": 19, "A": 20, "F": 21, "S": 22, "'": 23, "G": 24, "N": 25, "Y": 26, "M": 27, "C": 28, "E": 29, "Ö": 30, "O": 31, "H": 32, "P": 33, "Z": 34}
|