jonatasgrosman
commited on
Commit
·
de62d73
1
Parent(s):
b3d28eb
Update README.md
Browse files
README.md
CHANGED
@@ -52,17 +52,17 @@ model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
|
|
52 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
53 |
|
54 |
# Preprocessing the datasets.
|
55 |
-
# We need to read the
|
56 |
def speech_file_to_array_fn(batch):
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
|
61 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
62 |
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
|
63 |
|
64 |
with torch.no_grad():
|
65 |
-
|
66 |
|
67 |
predicted_ids = torch.argmax(logits, dim=-1)
|
68 |
|
@@ -73,7 +73,7 @@ print("Reference:", test_dataset["sentence"][:2])
|
|
73 |
|
74 |
## Evaluation
|
75 |
|
76 |
-
The model can be evaluated as follows on the
|
77 |
|
78 |
```python
|
79 |
import torch
|
@@ -88,7 +88,7 @@ MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-finnish"
|
|
88 |
DEVICE = "cuda"
|
89 |
|
90 |
CHARS_TO_IGNORE = [",", "?", ".", "!", "-", ";", ":", '""', "%", "'", '"', "�", "·", "჻", "¿", "¡", "~", "՞", "؟", "،", "।", "॥", "«", "»", "„", "“", "”", "「", "」", "‘", "’", "《", "》"]
|
91 |
-
CURRENCY_SYMBOLS = ["
|
92 |
|
93 |
test_dataset = load_dataset("common_voice", LANG_ID, split="test")
|
94 |
wer = load_metric("wer")
|
@@ -98,7 +98,7 @@ if LANG_ID in hg.Languages.get_all():
|
|
98 |
# creating regex to match language specific non valid characters
|
99 |
alphabet = list(hg.Languages.get_alphabet([LANG_ID]))
|
100 |
valid_chars = alphabet + CURRENCY_SYMBOLS
|
101 |
-
unk_regex = "[^"+re.escape("".join(valid_chars))+"
|
102 |
|
103 |
chars_to_ignore_regex = f'[{re.escape("".join(CHARS_TO_IGNORE))}]'
|
104 |
|
@@ -109,7 +109,7 @@ model.to(DEVICE)
|
|
109 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
110 |
|
111 |
# Preprocessing the datasets.
|
112 |
-
# We need to read the
|
113 |
def speech_file_to_array_fn(batch):
|
114 |
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
|
115 |
if unk_regex is not None:
|
@@ -121,16 +121,16 @@ def speech_file_to_array_fn(batch):
|
|
121 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
122 |
|
123 |
# Preprocessing the datasets.
|
124 |
-
# We need to read the
|
125 |
def evaluate(batch):
|
126 |
-
|
127 |
|
128 |
-
|
129 |
-
|
130 |
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
|
135 |
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
136 |
|
|
|
52 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
53 |
|
54 |
# Preprocessing the datasets.
|
55 |
+
# We need to read the audio files as arrays
|
56 |
def speech_file_to_array_fn(batch):
|
57 |
+
\tspeech_array, sampling_rate = torchaudio.load(batch["path"])
|
58 |
+
\tbatch["speech"] = resampler(speech_array).squeeze().numpy()
|
59 |
+
\treturn batch
|
60 |
|
61 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
62 |
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
|
63 |
|
64 |
with torch.no_grad():
|
65 |
+
\tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
|
66 |
|
67 |
predicted_ids = torch.argmax(logits, dim=-1)
|
68 |
|
|
|
73 |
|
74 |
## Evaluation
|
75 |
|
76 |
+
The model can be evaluated as follows on the Finnish test data of Common Voice.
|
77 |
|
78 |
```python
|
79 |
import torch
|
|
|
88 |
DEVICE = "cuda"
|
89 |
|
90 |
CHARS_TO_IGNORE = [",", "?", ".", "!", "-", ";", ":", '""', "%", "'", '"', "�", "·", "჻", "¿", "¡", "~", "՞", "؟", "،", "।", "॥", "«", "»", "„", "“", "”", "「", "」", "‘", "’", "《", "》"]
|
91 |
+
CURRENCY_SYMBOLS = ["{{%htmlContent%}}quot;, "£", "€", "¥", "₩", "₹", "₽", "₱", "₦", "₼", "ლ", "₭", "₴", "₲", "₫", "₡", "₵", "₿", "฿", "¢"]
|
92 |
|
93 |
test_dataset = load_dataset("common_voice", LANG_ID, split="test")
|
94 |
wer = load_metric("wer")
|
|
|
98 |
# creating regex to match language specific non valid characters
|
99 |
alphabet = list(hg.Languages.get_alphabet([LANG_ID]))
|
100 |
valid_chars = alphabet + CURRENCY_SYMBOLS
|
101 |
+
unk_regex = "[^"+re.escape("".join(valid_chars))+"\\s\\d]"
|
102 |
|
103 |
chars_to_ignore_regex = f'[{re.escape("".join(CHARS_TO_IGNORE))}]'
|
104 |
|
|
|
109 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
110 |
|
111 |
# Preprocessing the datasets.
|
112 |
+
# We need to read the audio files as arrays
|
113 |
def speech_file_to_array_fn(batch):
|
114 |
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
|
115 |
if unk_regex is not None:
|
|
|
121 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
122 |
|
123 |
# Preprocessing the datasets.
|
124 |
+
# We need to read the audio files as arrays
|
125 |
def evaluate(batch):
|
126 |
+
\tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
127 |
|
128 |
+
\twith torch.no_grad():
|
129 |
+
\t\tlogits = model(inputs.input_values.to(DEVICE), attention_mask=inputs.attention_mask.to(DEVICE)).logits
|
130 |
|
131 |
+
\tpred_ids = torch.argmax(logits, dim=-1)
|
132 |
+
\tbatch["pred_strings"] = processor.batch_decode(pred_ids)
|
133 |
+
\treturn batch
|
134 |
|
135 |
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
136 |
|