|
--- |
|
library_name: transformers |
|
tags: |
|
- chocolatine |
|
- dpo |
|
license: apache-2.0 |
|
datasets: |
|
- jpacifico/french-orca-dpo-pairs-revised |
|
language: |
|
- fr |
|
- en |
|
--- |
|
### Chocolatine-2-14B-Instruct-v2.0.3 |
|
|
|
DPO fine-tuning of the merged model [jpacifico/Chocolatine-2-merged-qwen25arch](https://huggingface.co/jpacifico/Chocolatine-2-merged-qwen25arch) (Qwen-2.5-14B architecture) |
|
using the [jpacifico/french-orca-dpo-pairs-revised](https://huggingface.co/datasets/jpacifico/french-orca-dpo-pairs-revised) RLHF dataset. |
|
Training in French also improves the model's overall capabilities. |
|
|
|
> [!TIP] Window context : up to 128K tokens |
|
|
|
|
|
### OpenLLM Leaderboard |
|
|
|
Chocolatine-2 is the best-performing 14B fine-tuned model (Ex-aequo with avg. score 41.08) on the [OpenLLM Leaderboard](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) |
|
[Updated 2025-02-12] |
|
|
|
| Metric |Value| |
|
|-------------------|----:| |
|
|**Avg.** |**41.08**| |
|
|IFEval |70.37| |
|
|BBH |50.63| |
|
|MATH Lvl 5 |40.56| |
|
|GPQA |17.23| |
|
|MuSR |19.07| |
|
|MMLU-PRO |48.60| |
|
|
|
|
|
### LLM Leaderboard FR |
|
|
|
Top 3 all categories on the French Government [Leaderboard LLM FR](https://huggingface.co/spaces/fr-gouv-coordination-ia/llm_leaderboard_fr#/) |
|
|
|
 |
|
|
|
[Updated 2025-02-15] |
|
|
|
### MT-Bench-French |
|
|
|
Chocolatine-2 outperforms its previous versions and its base architecture Qwen-2.5 model on [MT-Bench-French](https://huggingface.co/datasets/bofenghuang/mt-bench-french), used with [multilingual-mt-bench](https://github.com/Peter-Devine/multilingual_mt_bench) and GPT-4-Turbo as a LLM-judge. |
|
My goal was to achieve GPT-4o-mini's performance on the French language, this version equals the performance of the OpenAI model according to this benchmark |
|
|
|
``` |
|
########## First turn ########## |
|
score |
|
model turn |
|
gpt-4o-mini 1 9.287500 |
|
Chocolatine-2-14B-Instruct-v2.0.3 1 9.112500 |
|
Qwen2.5-14B-Instruct 1 8.887500 |
|
Chocolatine-14B-Instruct-DPO-v1.2 1 8.612500 |
|
Phi-3.5-mini-instruct 1 8.525000 |
|
Chocolatine-3B-Instruct-DPO-v1.2 1 8.375000 |
|
DeepSeek-R1-Distill-Qwen-14B 1 8.375000 |
|
phi-4 1 8.300000 |
|
Phi-3-medium-4k-instruct 1 8.225000 |
|
gpt-3.5-turbo 1 8.137500 |
|
Chocolatine-3B-Instruct-DPO-Revised 1 7.987500 |
|
Meta-Llama-3.1-8B-Instruct 1 7.050000 |
|
vigostral-7b-chat 1 6.787500 |
|
Mistral-7B-Instruct-v0.3 1 6.750000 |
|
gemma-2-2b-it 1 6.450000 |
|
|
|
########## Second turn ########## |
|
score |
|
model turn |
|
Chocolatine-2-14B-Instruct-v2.0.3 2 9.050000 |
|
gpt-4o-mini 2 8.912500 |
|
Qwen2.5-14B-Instruct 2 8.912500 |
|
Chocolatine-14B-Instruct-DPO-v1.2 2 8.337500 |
|
DeepSeek-R1-Distill-Qwen-14B 2 8.200000 |
|
phi-4 2 8.131250 |
|
Chocolatine-3B-Instruct-DPO-Revised 2 7.937500 |
|
Chocolatine-3B-Instruct-DPO-v1.2 2 7.862500 |
|
Phi-3-medium-4k-instruct 2 7.750000 |
|
gpt-3.5-turbo 2 7.679167 |
|
Phi-3.5-mini-instruct 2 7.575000 |
|
Meta-Llama-3.1-8B-Instruct 2 6.787500 |
|
Mistral-7B-Instruct-v0.3 2 6.500000 |
|
vigostral-7b-chat 2 6.162500 |
|
gemma-2-2b-it 2 6.100000 |
|
|
|
########## Average ########## |
|
score |
|
model |
|
gpt-4o-mini 9.100000 |
|
Chocolatine-2-14B-Instruct-v2.0.3 9.081250 |
|
Qwen2.5-14B-Instruct 8.900000 |
|
Chocolatine-14B-Instruct-DPO-v1.2 8.475000 |
|
DeepSeek-R1-Distill-Qwen-14B 8.287500 |
|
phi-4 8.215625 |
|
Chocolatine-3B-Instruct-DPO-v1.2 8.118750 |
|
Phi-3.5-mini-instruct 8.050000 |
|
Phi-3-medium-4k-instruct 7.987500 |
|
Chocolatine-3B-Instruct-DPO-Revised 7.962500 |
|
gpt-3.5-turbo 7.908333 |
|
Meta-Llama-3.1-8B-Instruct 6.918750 |
|
Mistral-7B-Instruct-v0.3 6.625000 |
|
vigostral-7b-chat 6.475000 |
|
gemma-2-2b-it 6.275000 |
|
``` |
|
|
|
### Usage |
|
|
|
You can run this model using my [Colab notebook](https://github.com/jpacifico/Chocolatine-LLM/blob/main/Chocolatine_14B_inference_test_colab.ipynb) |
|
|
|
You can also run Chocolatine-2 using the following code: |
|
|
|
```python |
|
import transformers |
|
from transformers import AutoTokenizer |
|
|
|
# Format prompt |
|
message = [ |
|
{"role": "system", "content": "You are a helpful assistant chatbot."}, |
|
{"role": "user", "content": "What is a Large Language Model?"} |
|
] |
|
tokenizer = AutoTokenizer.from_pretrained(new_model) |
|
prompt = tokenizer.apply_chat_template(message, add_generation_prompt=True, tokenize=False) |
|
|
|
# Create pipeline |
|
pipeline = transformers.pipeline( |
|
"text-generation", |
|
model=new_model, |
|
tokenizer=tokenizer |
|
) |
|
|
|
# Generate text |
|
sequences = pipeline( |
|
prompt, |
|
do_sample=True, |
|
temperature=0.7, |
|
top_p=0.9, |
|
num_return_sequences=1, |
|
max_length=200, |
|
) |
|
print(sequences[0]['generated_text']) |
|
``` |
|
|
|
### Limitations |
|
|
|
The Chocolatine-2 model series is a quick demonstration that a base model can be easily fine-tuned to achieve compelling performance. |
|
It does not have any moderation mechanism. |
|
|
|
- **Developed by:** Jonathan Pacifico, 2025 |
|
- **Model type:** LLM |
|
- **Language(s) (NLP):** French, English |
|
- **License:** Apache-2.0 |
|
|
|
Made with ❤️ in France |