|
--- |
|
language: |
|
- es |
|
license: cc-by-nc-4.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- jpherrerap/competencia2 |
|
model-index: |
|
- name: ner-roberta-es-clinical-trials-ner |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# ner-roberta-es-clinical-trials-ner |
|
|
|
This model is a fine-tuned version of [lcampillos/roberta-es-clinical-trials-ner](https://huggingface.co/lcampillos/roberta-es-clinical-trials-ner) on the jpherrerap/competencia2 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2661 |
|
- Body Part Precision: 0.7124 |
|
- Body Part Recall: 0.8173 |
|
- Body Part F1: 0.7612 |
|
- Body Part Number: 197 |
|
- Disease Precision: 0.7712 |
|
- Disease Recall: 0.7697 |
|
- Disease F1: 0.7704 |
|
- Disease Number: 521 |
|
- Family Member Precision: 0.8462 |
|
- Family Member Recall: 0.8462 |
|
- Family Member F1: 0.8462 |
|
- Family Member Number: 13 |
|
- Medication Precision: 0.8378 |
|
- Medication Recall: 0.8378 |
|
- Medication F1: 0.8378 |
|
- Medication Number: 37 |
|
- Procedure Precision: 0.6510 |
|
- Procedure Recall: 0.7239 |
|
- Procedure F1: 0.6855 |
|
- Procedure Number: 134 |
|
- Overall Precision: 0.7418 |
|
- Overall Recall: 0.7772 |
|
- Overall F1: 0.7591 |
|
- Overall Accuracy: 0.9238 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 13 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 2 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Body Part Precision | Body Part Recall | Body Part F1 | Body Part Number | Disease Precision | Disease Recall | Disease F1 | Disease Number | Family Member Precision | Family Member Recall | Family Member F1 | Family Member Number | Medication Precision | Medication Recall | Medication F1 | Medication Number | Procedure Precision | Procedure Recall | Procedure F1 | Procedure Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------------------:|:----------------:|:------------:|:----------------:|:-----------------:|:--------------:|:----------:|:--------------:|:-----------------------:|:--------------------:|:----------------:|:--------------------:|:--------------------:|:-----------------:|:-------------:|:-----------------:|:-------------------:|:----------------:|:------------:|:----------------:|:-----------------:|:--------------:|:----------:|:----------------:| |
|
| 0.3329 | 1.0 | 502 | 0.2561 | 0.6830 | 0.7766 | 0.7268 | 197 | 0.7718 | 0.7658 | 0.7688 | 521 | 0.9231 | 0.9231 | 0.9231 | 13 | 0.75 | 0.8108 | 0.7792 | 37 | 0.6218 | 0.7239 | 0.6690 | 134 | 0.7274 | 0.7661 | 0.7462 | 0.9219 | |
|
| 0.1699 | 2.0 | 1004 | 0.2661 | 0.7124 | 0.8173 | 0.7612 | 197 | 0.7712 | 0.7697 | 0.7704 | 521 | 0.8462 | 0.8462 | 0.8462 | 13 | 0.8378 | 0.8378 | 0.8378 | 37 | 0.6510 | 0.7239 | 0.6855 | 134 | 0.7418 | 0.7772 | 0.7591 | 0.9238 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.30.2 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.13.1 |
|
- Tokenizers 0.13.3 |
|
|