jpherrerap's picture
update model card README.md
b2733fa
|
raw
history blame
4.35 kB
metadata
license: cc-by-nc-4.0
tags:
  - generated_from_trainer
model-index:
  - name: ner-roberta-es-clinical-trials-ner
    results: []

ner-roberta-es-clinical-trials-ner

This model is a fine-tuned version of lcampillos/roberta-es-clinical-trials-ner on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2811
  • Body Part Precision: 0.6861
  • Body Part Recall: 0.7766
  • Body Part F1: 0.7286
  • Body Part Number: 197
  • Disease Precision: 0.7476
  • Disease Recall: 0.7505
  • Disease F1: 0.7490
  • Disease Number: 521
  • Family Member Precision: 0.8462
  • Family Member Recall: 0.8462
  • Family Member F1: 0.8462
  • Family Member Number: 13
  • Medication Precision: 0.8158
  • Medication Recall: 0.8378
  • Medication F1: 0.8267
  • Medication Number: 37
  • Procedure Precision: 0.6282
  • Procedure Recall: 0.7313
  • Procedure F1: 0.6759
  • Procedure Number: 134
  • Overall Precision: 0.7177
  • Overall Recall: 0.7583
  • Overall F1: 0.7375
  • Overall Accuracy: 0.9174

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 13
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Body Part Precision Body Part Recall Body Part F1 Body Part Number Disease Precision Disease Recall Disease F1 Disease Number Family Member Precision Family Member Recall Family Member F1 Family Member Number Medication Precision Medication Recall Medication F1 Medication Number Procedure Precision Procedure Recall Procedure F1 Procedure Number Overall Precision Overall Recall Overall F1 Overall Accuracy
0.3951 1.0 502 0.2831 0.6697 0.7513 0.7081 197 0.7314 0.7370 0.7342 521 1.0 0.8462 0.9167 13 0.625 0.6757 0.6494 37 0.5556 0.6716 0.6081 134 0.6861 0.7295 0.7071 0.9144
0.2123 2.0 1004 0.2912 0.6623 0.7665 0.7106 197 0.7389 0.7332 0.7360 521 0.7857 0.8462 0.8148 13 0.675 0.7297 0.7013 37 0.6289 0.7463 0.6826 134 0.7004 0.7439 0.7215 0.9132
0.1686 3.0 1506 0.2811 0.6861 0.7766 0.7286 197 0.7476 0.7505 0.7490 521 0.8462 0.8462 0.8462 13 0.8158 0.8378 0.8267 37 0.6282 0.7313 0.6759 134 0.7177 0.7583 0.7375 0.9174

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.13.1
  • Tokenizers 0.13.3