|
--- |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- data_registros_layoutv3 |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: layoutlmv3-finetuned-registros_100 |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: data_registros_layoutv3 |
|
type: data_registros_layoutv3 |
|
config: default |
|
split: test |
|
args: default |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.9967585089141004 |
|
- name: Recall |
|
type: recall |
|
value: 0.9951456310679612 |
|
- name: F1 |
|
type: f1 |
|
value: 0.9959514170040485 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.999531542785759 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# layoutlmv3-finetuned-registros_100 |
|
|
|
This model was trained from scratch on the data_registros_layoutv3 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0050 |
|
- Precision: 0.9968 |
|
- Recall: 0.9951 |
|
- F1: 0.9960 |
|
- Accuracy: 0.9995 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-06 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- training_steps: 600 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 4.35 | 100 | 0.0106 | 0.9871 | 0.9935 | 0.9903 | 0.9991 | |
|
| No log | 8.7 | 200 | 0.0073 | 0.9984 | 0.9968 | 0.9976 | 0.9997 | |
|
| No log | 13.04 | 300 | 0.0061 | 0.9968 | 0.9968 | 0.9968 | 0.9997 | |
|
| No log | 17.39 | 400 | 0.0048 | 0.9968 | 0.9984 | 0.9976 | 0.9997 | |
|
| 0.0109 | 21.74 | 500 | 0.0053 | 0.9968 | 0.9968 | 0.9968 | 0.9997 | |
|
| 0.0109 | 26.09 | 600 | 0.0050 | 0.9968 | 0.9951 | 0.9960 | 0.9995 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.29.2 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.12.0 |
|
- Tokenizers 0.13.3 |
|
|