stt

This model is a fine-tuned version of facebook/mms-1b-all on the generator dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1619
  • Wer Lug: 0.161
  • Wer Eng: 0.096
  • Wer Mean: 0.129

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Lug Wer Eng Wer Mean
0.1876 0.1 500 0.1711 0.183 0.106 0.144
0.1971 0.2 1000 0.1702 0.172 0.106 0.139
0.1898 0.3 1500 0.1687 0.168 0.108 0.138
0.1903 0.4 2000 0.1686 0.165 0.103 0.134
0.1888 0.5 2500 0.1663 0.165 0.096 0.131
0.1908 1.1 3000 0.1637 0.16 0.095 0.127
0.1792 1.2 3500 0.1642 0.157 0.094 0.125
0.1963 1.3 4000 0.1625 0.158 0.095 0.127
0.184 1.4 4500 0.1623 0.158 0.094 0.126
0.1888 1.5 5000 0.1619 0.161 0.096 0.129

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
6
Safetensors
Model size
965M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for jq/mms-1b-lug-eng

Finetuned
(214)
this model