Edit model card

Model Information

Intended Use

How to use

Use with transformers

Starting with transformers >= 4.45.0 onward, you can run inference using conversational messages that may include an image you can query about.

Make sure to update your transformers installation via pip install --upgrade transformers.

import requests
import torch
from PIL import Image
from transformers import MllamaForConditionalGeneration, AutoProcessor

model_id = "meta-llama/Llama-3.2-11B-Vision-Instruct"

model = MllamaForConditionalGeneration.from_pretrained(
    model_id,
    torch_dtype=torch.bfloat16,
    device_map="auto",
)
processor = AutoProcessor.from_pretrained(model_id)

url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/0052a70beed5bf71b92610a43a52df6d286cd5f3/diffusers/rabbit.jpg"
image = Image.open(requests.get(url, stream=True).raw)

messages = [
    {"role": "user", "content": [
        {"type": "image"},
        {"type": "text", "text": "If I had to write a haiku for this one, it would be: "}
    ]}
]
input_text = processor.apply_chat_template(messages, add_generation_prompt=True)
inputs = processor(
    image,
    input_text,
    add_special_tokens=False,
    return_tensors="pt"
).to(model.device)

output = model.generate(**inputs, max_new_tokens=30)
print(processor.decode(output[0]))

Use with llama

Training Data

Overview: Llama 3.2-Vision was pretrained on 6B image and text pairs. The instruction tuning data includes publicly available vision instruction datasets, as well as over 3M synthetically generated examples.

Data Freshness: The pretraining data has a cutoff of December 2023.

Benchmarks - Image Reasoning

Downloads last month
14
Safetensors
Model size
10.7B params
Tensor type
BF16
·
Inference Examples
Inference API (serverless) does not yet support transformers models for this pipeline type.

Model tree for jrc/Llama-3.2-11B-DataVizQA

Finetuned
(49)
this model