MoEv4Config-TestWeightedTIES-7b

MoEv4Config-TestWeightedTIES-7b is a merge of the following models using LazyMergekit:

🧩 Configuration

models:
  - model: Kukedlc/NeuTrixOmniBe-7B-model-remix
    # No parameters necessary for base model
  - model: Kukedlc/NeuTrixOmniBe-7B-model-remix
    parameters:
      density: [1, 0.7, 0.1]
      weight: [0, 0.3, 0.7, 1]
  - model: PetroGPT/WestSeverus-7B-DPO
    parameters:
      density: [1, 0.7, 0.3]
      weight: [0, 0.25, 0.5, 1]
  - model: vanillaOVO/supermario_v4
    parameters:
      density: 0.33
      weight:
        - filter: mlp
          value: 0.5
        - value: 0
merge_method: ties
base_model: Kukedlc/NeuTrixOmniBe-7B-model-remix
parameters:
  int8_mask: true
  normalize: true
  sparsify:
    - filter: mlp
      value: 0.5
    - filter: self_attn
      value: 0.5
dtype: bfloat16

πŸ’» Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "jsfs11/MoEv4Config-TestWeightedTIES-7b"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 75.39
AI2 Reasoning Challenge (25-Shot) 71.59
HellaSwag (10-Shot) 88.19
MMLU (5-Shot) 65.07
TruthfulQA (0-shot) 70.87
Winogrande (5-shot) 83.82
GSM8k (5-shot) 72.78
Downloads last month
38
Safetensors
Model size
7.24B params
Tensor type
BF16
Β·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for jsfs11/MoEv4Config-TestWeightedTIES-7b

Evaluation results