Mistral 7B Merges
Collection
Merges that may or may not be worth using. All credit goes to Maxime Labonne's course, https://github.com/mlabonne/llm-course, + mergekit
•
6 items
•
Updated
TurdusTrixBeagle-DARETIES-7B is a merge of the following models using LazyMergekit:
models:
- model: mistralai/Mistral-7B-v0.1
# No parameters necessary for base model
- model: udkai/Turdus
parameters:
density: 0.65
weight: 0.4
- model: CultriX/MergeTrix-7B-v2
parameters:
density: 0.45
weight: 0.3
- model: mlabonne/NeuralBeagle14-7B
parameters:
density: 0.55
weight: 0.3
merge_method: dare_ties
base_model: mistralai/Mistral-7B-v0.1
parameters:
int8_mask: true
dtype: float16
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "jsfs11/TurdusTrixBeagle-DARETIES-7B"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 75.20 |
AI2 Reasoning Challenge (25-Shot) | 73.46 |
HellaSwag (10-Shot) | 88.61 |
MMLU (5-Shot) | 64.89 |
TruthfulQA (0-shot) | 68.81 |
Winogrande (5-shot) | 85.16 |
GSM8k (5-shot) | 70.28 |