MBERT_uncased_WeightedBinaryCrossEntropy_full_ft

This model is a fine-tuned version of google-bert/bert-base-multilingual-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Accuracy: 0.689
  • F1: 0.8114
  • Precision: 0.6876
  • Recall: 0.9896
  • Roc Auc: 0.5257
  • Loss: 0.5408

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Accuracy F1 Precision Recall Roc Auc Validation Loss
No log 0.992 62 0.676 0.8067 0.676 1.0 0.5 0.7371
0.8899 2.0 125 0.676 0.8067 0.676 1.0 0.5 0.6063
0.8899 2.976 186 0.689 0.8114 0.6876 0.9896 0.5257 0.5408

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.20.3
Downloads last month
180
Safetensors
Model size
167M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for jsl5710/MBERT_uncased_WeightedBinaryCrossEntropy_full_ft

Finetuned
(1760)
this model