jssky's picture
End of training
d20f925 verified
---
library_name: peft
license: apache-2.0
base_model: unsloth/Qwen2.5-Coder-1.5B-Instruct
tags:
- axolotl
- generated_from_trainer
model-index:
- name: ebb7f595-e80f-4d33-9bb8-2d193ea0f113
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: unsloth/Qwen2.5-Coder-1.5B-Instruct
bf16: false
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- dc0035038f514bd8_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/dc0035038f514bd8_train_data.json
type:
field_input: rational_answer
field_instruction: question
field_output: answer
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
devices:
- 0
- 1
- 2
- 3
- 4
- 5
- 6
- 7
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: true
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: jssky/ebb7f595-e80f-4d33-9bb8-2d193ea0f113
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 10
micro_batch_size: 1
mlflow_experiment_name: /tmp/dc0035038f514bd8_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
num_gpus: 8
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 4056
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: ebb7f595-e80f-4d33-9bb8-2d193ea0f113
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: ebb7f595-e80f-4d33-9bb8-2d193ea0f113
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# ebb7f595-e80f-4d33-9bb8-2d193ea0f113
This model is a fine-tuned version of [unsloth/Qwen2.5-Coder-1.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-Coder-1.5B-Instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7477
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.2605 | 0.0006 | 1 | 1.2916 |
| 1.5518 | 0.0018 | 3 | 1.2262 |
| 0.9726 | 0.0037 | 6 | 1.0256 |
| 0.8408 | 0.0055 | 9 | 0.7477 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1