Edit model card

outputs

This model is a fine-tuned version of gerulata/slovakbert on the ju-bezdek/conll2003-SK-NER dataset. It achieves the following results on the evaluation (validation) set:

  • Loss: 0.1752
  • Precision: 0.8190
  • Recall: 0.8390
  • F1: 0.8288
  • Accuracy: 0.9526

Model description

More information needed

Code example

from transformers import pipeline, AutoModel, AutoTokenizer
from spacy import displacy
import os


model_path="ju-bezdek/slovakbert-conll2003-sk-ner"

aggregation_strategy="max"
ner_pipeline = pipeline(task='ner', model=model_path, aggregation_strategy=aggregation_strategy)

input_sentence= "Ruský premiér Viktor Černomyrdin v piatok povedal, že prezident Boris Jeľcin , ktorý je na dovolenke mimo Moskvy , podporil mierový plán šéfa bezpečnosti Alexandra Lebedu pre Čečensko, uviedla tlačová agentúra Interfax"
ner_ents = ner_pipeline(input_sentence)
print(ner_ents)

ent_group_labels = [ner_pipeline.model.config.id2label[i][2:] for i in ner_pipeline.model.config.id2label if i>0]

options = {"ents":ent_group_labels}

dicplacy_ents = [{"start":ent["start"], "end":ent["end"], "label":ent["entity_group"]} for ent in ner_ents]
displacy.render({"text":input_sentence, "ents":dicplacy_ents}, style="ent", options=options, jupyter=True, manual=True)

Result:

Ruský MISC premiér Viktor Černomyrdin PER v piatok povedal, že prezident Boris Jeľcin, PER , ktorý je na dovolenke mimo Moskvy LOC , podporil mierový plán šéfa bezpečnosti Alexandra Lebedu PER pre Čečensko, LOC uviedla tlačová agentúra Interfax ORG

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.3237 1.0 878 0.2541 0.7125 0.8059 0.7563 0.9283
0.1663 2.0 1756 0.2370 0.7775 0.8090 0.7929 0.9394
0.1251 3.0 2634 0.2289 0.7732 0.8029 0.7878 0.9385
0.0984 4.0 3512 0.2818 0.7294 0.8189 0.7715 0.9294
0.0808 5.0 4390 0.3138 0.7615 0.7900 0.7755 0.9326
0.0578 6.0 5268 0.3072 0.7548 0.8222 0.7871 0.9370
0.0481 7.0 6146 0.2778 0.7897 0.8156 0.8025 0.9408
0.0414 8.0 7024 0.3336 0.7695 0.8201 0.7940 0.9389
0.0268 9.0 7902 0.3294 0.7868 0.8140 0.8002 0.9409
0.0204 10.0 8780 0.3693 0.7657 0.8239 0.7938 0.9376
0.016 11.0 9658 0.3816 0.7932 0.8242 0.8084 0.9425
0.0108 12.0 10536 0.3607 0.7929 0.8256 0.8089 0.9431
0.0078 13.0 11414 0.3980 0.7915 0.8240 0.8074 0.9423
0.0062 14.0 12292 0.4096 0.7995 0.8247 0.8119 0.9436
0.0035 15.0 13170 0.4177 0.8006 0.8251 0.8127 0.9438

Framework versions

  • Transformers 4.15.0
  • Pytorch 1.10.1+cu102
  • Datasets 1.17.0
  • Tokenizers 0.10.3
Downloads last month
5
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Dataset used to train ju-bezdek/slovakbert-conll2003-sk-ner

Evaluation results