metadata
base_model: medicalai/ClinicalBERT
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: ClinicalBERT_BioNLP13CG_NER_new
results: []
ClinicalBERT_BioNLP13CG_NER_new
This model is a fine-tuned version of medicalai/ClinicalBERT on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2843
- Precision: 0.7607
- Recall: 0.7531
- F1: 0.7569
- Accuracy: 0.9232
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 191 | 0.3654 | 0.7025 | 0.6984 | 0.7005 | 0.9035 |
No log | 2.0 | 382 | 0.2958 | 0.7563 | 0.7429 | 0.7495 | 0.9203 |
0.4451 | 3.0 | 573 | 0.2843 | 0.7607 | 0.7531 | 0.7569 | 0.9232 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0