VF_BERT_ST_1000

This model is a fine-tuned version of google-bert/bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1765
  • Precision: 0.9705
  • Recall: 0.9755
  • F1: 0.9730
  • Accuracy: 0.9636

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 259 0.1575 0.9595 0.9658 0.9626 0.9503
0.2118 2.0 518 0.1388 0.9660 0.9743 0.9701 0.9597
0.2118 3.0 777 0.1366 0.9688 0.9734 0.9711 0.9613
0.0546 4.0 1036 0.1488 0.9673 0.9726 0.9699 0.9603
0.0546 5.0 1295 0.1663 0.9675 0.9736 0.9705 0.9609
0.0251 6.0 1554 0.1673 0.9685 0.9750 0.9717 0.9628
0.0251 7.0 1813 0.1708 0.9707 0.9753 0.9730 0.9639
0.0133 8.0 2072 0.1707 0.9701 0.9742 0.9721 0.9631
0.0133 9.0 2331 0.1771 0.9703 0.9754 0.9728 0.9635
0.0094 10.0 2590 0.1765 0.9705 0.9755 0.9730 0.9636

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
4
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for judithrosell/VF_BERT_ST_1000

Finetuned
(2445)
this model