|
--- |
|
license: apache-2.0 |
|
base_model: google/flan-t5-small |
|
tags: |
|
- summarization |
|
- generated_from_trainer |
|
datasets: |
|
- scientific_papers |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: flan-t5-small-finetuned-scientific-articles |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: scientific_papers |
|
type: scientific_papers |
|
config: pubmed |
|
split: train |
|
args: pubmed |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 8.0297 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# flan-t5-small-finetuned-scientific-articles |
|
|
|
This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) on the scientific_papers dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.6792 |
|
- Rouge1: 8.0297 |
|
- Rouge2: 2.5421 |
|
- Rougel: 6.6908 |
|
- Rougelsum: 7.3431 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5.6e-05 |
|
- train_batch_size: 9 |
|
- eval_batch_size: 9 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| |
|
| 3.0943 | 1.0 | 56 | 2.8262 | 3.9456 | 1.1211 | 3.3527 | 3.6682 | |
|
| 3.0216 | 2.0 | 112 | 2.7682 | 6.0659 | 1.6822 | 5.2499 | 5.7102 | |
|
| 2.9495 | 3.0 | 168 | 2.7316 | 7.4704 | 2.4232 | 6.2443 | 6.913 | |
|
| 2.9057 | 4.0 | 224 | 2.7050 | 7.8789 | 2.6559 | 6.5559 | 7.1858 | |
|
| 2.8622 | 5.0 | 280 | 2.6792 | 8.0297 | 2.5421 | 6.6908 | 7.3431 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.2 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.19.2 |
|
- Tokenizers 0.19.1 |
|
|