|
--- |
|
license: mit |
|
library_name: peft |
|
tags: |
|
- generated_from_trainer |
|
base_model: roberta-base |
|
model-index: |
|
- name: roberta-base_lora_lr5e-05_bs4_epoch20_wd0.01 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# roberta-base_lora_lr5e-05_bs4_epoch20_wd0.01 |
|
|
|
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3786 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 19.0917 | 1.0 | 157 | 12.3781 | |
|
| 5.0512 | 2.0 | 314 | 4.0762 | |
|
| 3.8203 | 3.0 | 471 | 2.6873 | |
|
| 2.586 | 4.0 | 628 | 2.0339 | |
|
| 2.2522 | 5.0 | 785 | 1.6467 | |
|
| 1.8436 | 6.0 | 942 | 1.2936 | |
|
| 1.7033 | 7.0 | 1099 | 1.0691 | |
|
| 1.4103 | 8.0 | 1256 | 0.8708 | |
|
| 1.2267 | 9.0 | 1413 | 0.7359 | |
|
| 1.1845 | 10.0 | 1570 | 0.6333 | |
|
| 1.0321 | 11.0 | 1727 | 0.5510 | |
|
| 0.9554 | 12.0 | 1884 | 0.5251 | |
|
| 0.897 | 13.0 | 2041 | 0.4977 | |
|
| 0.8424 | 14.0 | 2198 | 0.4571 | |
|
| 0.8221 | 15.0 | 2355 | 0.4298 | |
|
| 0.7638 | 16.0 | 2512 | 0.4095 | |
|
| 0.7494 | 17.0 | 2669 | 0.4057 | |
|
| 0.751 | 18.0 | 2826 | 0.3920 | |
|
| 0.7365 | 19.0 | 2983 | 0.3818 | |
|
| 0.7312 | 20.0 | 3140 | 0.3786 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.7.1 |
|
- Transformers 4.36.2 |
|
- Pytorch 2.0.1 |
|
- Datasets 2.16.1 |
|
- Tokenizers 0.15.0 |