File size: 78,493 Bytes
6c419f8
 
5351a39
 
 
 
 
 
6c419f8
d42b8a6
ab730a0
35830b0
d42b8a6
 
94f7f49
d42b8a6
29683f3
 
dd6be4a
 
332557d
b52e77f
 
 
dd6be4a
 
535affd
 
3e2908a
535affd
 
4f3dcb6
 
 
4776524
 
2e5c42f
 
806ca56
bff67d4
806ca56
 
 
 
 
 
 
535affd
 
 
 
bff67d4
 
 
 
 
 
 
 
 
 
535affd
 
 
f5ac613
535affd
 
 
f5ac613
535affd
f5ac613
535affd
 
 
 
806ca56
 
 
 
42ec939
f5ac613
1024384
42ec939
dd6be4a
 
 
f5517c7
 
dd6be4a
4776524
59ed805
ab730a0
f5517c7
 
 
f4540b2
dd6be4a
7d93c1d
1d091b5
 
b64bd7d
59ed805
b64bd7d
 
7d93c1d
 
dd6be4a
 
 
 
b64bd7d
dd6be4a
acb4a78
dd6be4a
b64bd7d
03db8dd
dd6be4a
 
 
 
b64bd7d
dd6be4a
 
59ed805
dd6be4a
e9a864e
dd6be4a
 
 
 
 
 
b64bd7d
dd6be4a
b64bd7d
dd6be4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc75141
dd6be4a
 
b52e77f
332557d
b52e77f
535affd
 
684256c
535affd
 
 
 
 
 
 
 
 
 
 
 
9f280b0
535affd
9f280b0
535affd
3e2908a
 
9f280b0
7034452
 
9f280b0
050d08f
9f280b0
 
7034452
3e2908a
9f280b0
 
535affd
 
3e2908a
535affd
 
 
3e2908a
535affd
 
 
 
 
 
 
9f280b0
 
3e2908a
 
535affd
 
 
 
b05b0bc
 
 
 
 
 
 
 
01b50e3
 
 
 
 
 
 
 
b05b0bc
 
 
01b50e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b05b0bc
01b50e3
b05b0bc
01b50e3
 
b05b0bc
 
 
 
 
 
 
 
535affd
 
4f3dcb6
 
 
 
b64bd7d
 
 
 
 
 
4f3dcb6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d03047
 
 
 
 
 
 
 
4f3dcb6
 
8c06571
4f3dcb6
 
 
 
 
 
 
 
 
 
 
 
 
dd6be4a
4776524
 
8b74397
4776524
8b74397
4776524
c4ba74a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b74397
 
4776524
 
8b74397
 
2e5c42f
 
 
 
 
 
 
 
 
 
42ec939
 
2e5c42f
 
8b74397
2e5c42f
 
 
9d0cfc4
2e5c42f
806ca56
2e5c42f
4776524
42ec939
 
c4ba74a
806ca56
 
 
 
 
f5ac613
 
bff67d4
 
 
 
 
c4ba74a
bff67d4
 
 
 
 
c4ba74a
bff67d4
 
f5ac613
c4ba74a
 
 
 
 
f5ac613
806ca56
8b74397
535affd
8b74397
806ca56
 
 
8b74397
bff67d4
8b74397
bff67d4
c4ba74a
8b74397
 
806ca56
 
 
85941f5
 
 
bff67d4
c4ba74a
85941f5
 
806ca56
 
 
8b74397
 
 
bff67d4
c4ba74a
8b74397
 
806ca56
 
 
8b74397
 
 
bff67d4
c4ba74a
85941f5
 
806ca56
 
 
85941f5
bff67d4
85941f5
806ca56
 
 
85941f5
bff67d4
85941f5
bff67d4
c4ba74a
8b74397
 
806ca56
 
535affd
 
bff67d4
535affd
bff67d4
c4ba74a
535affd
 
 
 
 
 
bff67d4
535affd
bff67d4
c4ba74a
535affd
 
 
 
 
 
bff67d4
535affd
bff67d4
c4ba74a
535affd
 
 
 
 
 
bff67d4
535affd
bff67d4
535affd
4f3dcb6
535affd
 
 
 
 
 
 
 
 
 
 
 
bff67d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5ac613
 
bff67d4
 
 
 
250741a
bff67d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5ac613
 
bff67d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1024384
bff67d4
1024384
 
bff67d4
 
1024384
 
bff67d4
 
 
1024384
 
bff67d4
 
 
 
1024384
bff67d4
 
 
1024384
bff67d4
1024384
 
bff67d4
1024384
 
bff67d4
 
 
1024384
 
 
bff67d4
 
 
1024384
bff67d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
535affd
 
f5ac613
 
 
 
535affd
 
f5ac613
535affd
bff67d4
535affd
 
 
 
 
 
 
f5ac613
 
 
 
 
535affd
bff67d4
535affd
 
 
 
 
 
 
f5ac613
535affd
 
 
 
 
 
 
f5ac613
535affd
f5ac613
535affd
f5ac613
535affd
 
c4ba74a
535affd
 
 
 
 
 
bff67d4
535affd
 
c4ba74a
535affd
 
 
 
 
 
bff67d4
 
 
535affd
 
c4ba74a
535affd
 
 
 
 
 
f5ac613
d94919e
f5ac613
bff67d4
f5ac613
c4ba74a
f5ac613
 
 
 
 
 
 
535affd
 
c4ba74a
535affd
 
 
 
 
 
d94919e
535affd
 
 
f5ac613
535affd
f5ac613
 
 
 
535affd
 
c4ba74a
535affd
 
 
 
 
 
 
 
 
c4ba74a
535affd
 
 
 
 
 
 
 
 
c4ba74a
535affd
 
 
 
 
 
0c4f2f7
 
 
535affd
 
c4ba74a
535affd
 
 
 
 
 
 
c4ba74a
535affd
 
 
 
806ca56
8b74397
806ca56
8b74397
 
c4ba74a
8b74397
 
806ca56
 
 
4776524
 
 
 
c4ba74a
4776524
 
806ca56
 
 
4776524
 
 
 
c4ba74a
4776524
 
806ca56
 
 
4776524
 
 
85941f5
4776524
 
 
806ca56
 
 
 
42ec939
4776524
0c4f2f7
 
 
 
 
4776524
1024384
 
 
 
42ec939
 
f5ac613
 
0c4f2f7
 
 
 
 
 
 
 
 
f5ac613
1024384
 
 
 
 
 
 
 
f5ac613
c4ba74a
f5ac613
 
 
 
42ec939
4776524
 
 
 
 
 
c4ba74a
4776524
 
 
8b74397
 
4776524
 
 
 
 
42ec939
 
f5ac613
 
 
c4ba74a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5ac613
 
8b74397
 
4776524
dd6be4a
 
 
57a6e95
dd6be4a
29683f3
 
 
 
59ed805
 
29683f3
 
e07ebdd
 
59ed805
 
f5517c7
dc1b5c4
f5517c7
ab730a0
f5517c7
ab730a0
59ed805
 
f5517c7
ab730a0
4776524
 
 
 
59ed805
 
 
 
 
 
 
 
ab730a0
 
29683f3
 
f5517c7
dc1b5c4
a04f7c1
dc1b5c4
f5517c7
dc1b5c4
f4540b2
dc1b5c4
 
 
35830b0
dc1b5c4
860f763
2a67e8e
dc1b5c4
 
 
f4540b2
dc1b5c4
 
 
9013e2c
 
f4540b2
9013e2c
 
 
35830b0
9013e2c
860f763
dc1b5c4
f4540b2
860f763
dc1b5c4
 
ab730a0
dc1b5c4
f5517c7
dc1b5c4
f4540b2
 
 
 
 
59ed805
f4540b2
9013e2c
f5517c7
 
94f7f49
d42b8a6
35830b0
 
7d93c1d
 
1d091b5
 
d507056
 
 
 
 
 
1d091b5
 
 
 
 
 
 
 
 
 
b64bd7d
 
 
 
 
59ed805
 
 
 
 
 
 
 
 
 
 
 
 
b64bd7d
 
 
 
 
 
 
59ed805
 
 
b64bd7d
 
 
 
 
 
59ed805
 
b64bd7d
 
7d93c1d
 
f04faa4
 
7d93c1d
 
 
bc75141
 
7d93c1d
c58e5e4
bc75141
 
 
7d93c1d
c58e5e4
 
 
 
 
7d93c1d
 
2fc0cad
 
 
 
 
 
 
 
7d93c1d
 
2e5c42f
 
7d93c1d
 
 
bc75141
 
 
 
7d93c1d
 
59ed805
 
94f7f49
 
 
 
104df09
 
 
b98a3dd
35830b0
 
dc1b5c4
 
 
 
 
 
 
 
 
59ed805
94f7f49
 
 
 
 
104df09
 
94f7f49
 
 
59ed805
 
94f7f49
 
 
 
104df09
 
94f7f49
 
 
59ed805
 
94f7f49
 
b64bd7d
94f7f49
b64bd7d
 
94f7f49
b64bd7d
94f7f49
59ed805
 
94f7f49
 
 
 
104df09
 
94f7f49
 
 
59ed805
 
94f7f49
 
acb4a78
 
 
 
 
 
03db8dd
 
 
 
 
 
 
 
acb4a78
 
 
 
 
94f7f49
 
104df09
 
94f7f49
 
 
59ed805
 
94f7f49
 
b64bd7d
94f7f49
b64bd7d
 
94f7f49
 
 
4fdb730
 
332557d
35830b0
 
 
e75e8e0
35830b0
332557d
 
59ed805
 
94f7f49
 
03db8dd
e9a864e
03db8dd
 
e9a864e
 
 
 
 
 
 
 
 
 
 
 
2fc0cad
e9a864e
 
 
94f7f49
 
104df09
 
 
35830b0
 
dc1b5c4
 
 
 
 
 
4fdb730
dc1b5c4
 
 
332557d
35830b0
 
 
fed6813
35830b0
332557d
94f7f49
 
 
 
 
104df09
 
94f7f49
59ed805
 
94f7f49
 
 
 
104df09
 
94f7f49
59ed805
 
94f7f49
 
 
 
104df09
 
94f7f49
59ed805
 
94f7f49
 
b64bd7d
94f7f49
b64bd7d
 
94f7f49
59ed805
 
94f7f49
 
 
 
104df09
 
94f7f49
59ed805
 
94f7f49
 
 
 
104df09
 
94f7f49
59ed805
 
 
 
 
 
 
 
 
 
 
94f7f49
 
 
 
104df09
 
94f7f49
59ed805
 
94f7f49
 
e9a864e
94f7f49
e9a864e
 
104df09
dc1b5c4
 
4fdb730
dc1b5c4
 
 
4fdb730
dc1b5c4
 
 
 
 
 
104df09
94f7f49
332557d
35830b0
 
 
 
 
332557d
a0f34cc
94f7f49
 
 
 
104df09
 
94f7f49
59ed805
 
94f7f49
 
 
 
104df09
 
94f7f49
59ed805
 
94f7f49
 
 
 
104df09
 
94f7f49
59ed805
 
94f7f49
 
 
 
104df09
 
94f7f49
59ed805
 
94f7f49
 
 
 
104df09
 
94f7f49
59ed805
 
94f7f49
 
 
 
104df09
 
94f7f49
59ed805
 
94f7f49
 
b64bd7d
94f7f49
b64bd7d
 
94f7f49
59ed805
 
94f7f49
 
a0f34cc
94f7f49
b64bd7d
 
 
 
 
59ed805
 
b64bd7d
 
94f7f49
 
104df09
 
94f7f49
 
 
59ed805
 
94f7f49
 
 
 
104df09
 
94f7f49
 
 
59ed805
 
94f7f49
 
 
 
104df09
 
94f7f49
 
 
59ed805
 
94f7f49
 
 
 
104df09
 
94f7f49
8dde046
94f7f49
59ed805
 
94f7f49
 
 
 
104df09
 
94f7f49
59ed805
 
94f7f49
 
 
 
104df09
 
94f7f49
59ed805
 
94f7f49
 
 
 
104df09
 
94f7f49
59ed805
 
94f7f49
 
 
 
104df09
 
94f7f49
59ed805
 
94f7f49
 
 
 
104df09
 
94f7f49
59ed805
 
94f7f49
 
 
 
104df09
 
94f7f49
59ed805
 
94f7f49
 
 
 
104df09
 
94f7f49
59ed805
 
94f7f49
 
 
 
104df09
 
94f7f49
59ed805
 
94f7f49
 
 
 
104df09
 
94f7f49
59ed805
 
94f7f49
 
 
 
104df09
 
94f7f49
59ed805
 
94f7f49
 
 
 
104df09
 
 
35830b0
 
dc1b5c4
4fdb730
dc1b5c4
4fdb730
dc1b5c4
4fdb730
dc1b5c4
 
 
 
332557d
35830b0
 
94f7f49
2a42774
35830b0
332557d
94f7f49
bc75141
 
 
 
 
 
 
59ed805
 
bc75141
 
2d8bf09
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
---
license: wtfpl
datasets:
- k4d3/furry
language:
- en
tags:
- not-for-all-audiences
---

<!--markdownlint-disable MD033 MD038 -->

# Hotdogwolf's Yiff Toolkit

The Yiff Toolkit is a comprehensive set of tools designed to enhance your creative process in the realm of furry art. From refining artist styles to generating unique characters, the Yiff Toolkit provides a range of tools to help you cum.

> NOTE: You can click on any image in this README to be instantly teleported next to the original resolution version of it! If you want the metadata for a picture and it isn't there, you need to delete the letter e before the .png in the link! If a metadata containing original image is missing, please let me know!

## Table of Contents

<div style="background-color: lightyellow; padding: 10px;">
<details>
  <summary>Click to reveal table of contents</summary>

- [Hotdogwolf's Yiff Toolkit](#hotdogwolfs-yiff-toolkit)
  - [Table of Contents](#table-of-contents)
  - [Dataset Tools](#dataset-tools)
  - [Dataset Preparation](#dataset-preparation)
    - [Create the `training_dir` Directory](#create-the-training_dir-directory)
    - [Grabber](#grabber)
    - [Manual Method](#manual-method)
  - [Auto Taggers](#auto-taggers)
    - [eva02-vit-large-448-8046](#eva02-vit-large-448-8046)
  - [LoRA Training Guide](#lora-training-guide)
    - [Installation Tips](#installation-tips)
    - [Pony Training](#pony-training)
      - [Download Pony in Diffusers Format](#download-pony-in-diffusers-format)
      - [Sample Prompt File](#sample-prompt-file)
      - [Training Commands](#training-commands)
        - [`accelerate launch`](#accelerate-launch)
        - [`--lowram`](#--lowram)
        - [`--pretrained_model_name_or_path`](#--pretrained_model_name_or_path)
        - [`--output_dir`](#--output_dir)
        - [`--train_data_dir`](#--train_data_dir)
        - [`--resolution`](#--resolution)
        - [`--enable_bucket`](#--enable_bucket)
        - [`--min_bucket_reso` and `--max_bucket_reso`](#--min_bucket_reso-and---max_bucket_reso)
        - [`--network_alpha`](#--network_alpha)
        - [`--save_model_as`](#--save_model_as)
        - [`--network_module`](#--network_module)
        - [`--network_args`](#--network_args)
          - [`preset`](#preset)
          - [`conv_dim` and `conv_alpha`](#conv_dim-and-conv_alpha)
          - [`module_dropout` and `dropout` and `rank_dropout`](#module_dropout-and-dropout-and-rank_dropout)
          - [`use_tucker`](#use_tucker)
          - [`use_scalar`](#use_scalar)
          - [`rank_dropout_scale`](#rank_dropout_scale)
          - [`algo`](#algo)
          - [`train_norm`](#train_norm)
          - [`block_dims`](#block_dims)
          - [`block_alphas`](#block_alphas)
        - [`--network_dropout`](#--network_dropout)
        - [`--lr_scheduler`](#--lr_scheduler)
        - [`--lr_scheduler_num_cycles`](#--lr_scheduler_num_cycles)
        - [`--learning_rate` and `--unet_lr` and `--text_encoder_lr`](#--learning_rate-and---unet_lr-and---text_encoder_lr)
        - [`--network_dim`](#--network_dim)
        - [`--output_name`](#--output_name)
        - [`--scale_weight_norms`](#--scale_weight_norms)
        - [`--max_grad_norm`](#--max_grad_norm)
        - [`--no_half_vae`](#--no_half_vae)
        - [`--save_every_n_epochs` and `--save_last_n_epochs` or `--save_every_n_steps` and `--save_last_n_steps`](#--save_every_n_epochs-and---save_last_n_epochs-or---save_every_n_steps-and---save_last_n_steps)
        - [`--mixed_precision`](#--mixed_precision)
        - [`--save_precision`](#--save_precision)
        - [`--caption_extension`](#--caption_extension)
        - [`--cache_latents` and `--cache_latents_to_disk`](#--cache_latents-and---cache_latents_to_disk)
        - [`--optimizer_type`](#--optimizer_type)
        - [`--dataset_repeats`](#--dataset_repeats)
        - [`--max_train_steps`](#--max_train_steps)
        - [`--shuffle_caption`](#--shuffle_caption)
        - [`--sdpa` or `--xformers` or `--mem_eff_attn`](#--sdpa-or---xformers-or---mem_eff_attn)
        - [`--multires_noise_iterations` and `--multires_noise_discount`](#--multires_noise_iterations-and---multires_noise_discount)
          - [Implementation Details](#implementation-details)
        - [`--sample_prompts` and `--sample_sampler` and `--sample_every_n_steps`](#--sample_prompts-and---sample_sampler-and---sample_every_n_steps)
  - [Embeddings for 1.5 and SDXL](#embeddings-for-15-and-sdxl)
  - [ComfyUI Walkthrough any%](#comfyui-walkthrough-any)
  - [AnimateDiff for Masochists](#animatediff-for-masochists)
  - [Stable Cascade Furry Bible](#stable-cascade-furry-bible)
    - [Resonance Cascade](#resonance-cascade)
  - [SDXL Furry Bible](#sdxl-furry-bible)
    - [Some Common Knowledge Stuff](#some-common-knowledge-stuff)
    - [SeaArt Furry](#seaart-furry)
    - [Pony Diffusion V6](#pony-diffusion-v6)
      - [Requirements](#requirements)
      - [Positive Prompt Stuff](#positive-prompt-stuff)
      - [Negative Prompt Stuff](#negative-prompt-stuff)
      - [How to Prompt Female Anthro Lions](#how-to-prompt-female-anthro-lions)
  - [Pony Diffusion V6 LoRAs](#pony-diffusion-v6-loras)
    - [Concept Loras](#concept-loras)
      - [small\_dom\_big\_sub-v1e400](#small_dom_big_sub-v1e400)
      - [analbeads-v1e400](#analbeads-v1e400)
      - [bdsm-v1e400](#bdsm-v1e400)
      - [blue\_frost](#blue_frost)
      - [cervine\_penis-v1e400](#cervine_penis-v1e400)
      - [non-euclidean\_sex-v1e400](#non-euclidean_sex-v1e400)
      - [space-v1e500](#space-v1e500)
      - [spacengine-v1e500](#spacengine-v1e500)
    - [Artist/Style LoRAs](#artiststyle-loras)
      - [blp-v1e400](#blp-v1e400)
      - [butterchalk-v3e400](#butterchalk-v3e400)
      - [cecily\_lin-v1e37](#cecily_lin-v1e37)
      - [chunie-v1e5](#chunie-v1e5)
      - [cooliehigh-v1e45](#cooliehigh-v1e45)
      - [by\_clybius-v1e400](#by_clybius-v1e400)
      - [dagasi-v1e134](#dagasi-v1e134)
      - [darkgem-v1e4](#darkgem-v1e4)
      - [by\_himari-v1e400](#by_himari-v1e400)
      - [furry\_sticker-v1e250](#furry_sticker-v1e250)
      - [goronic-v1e1](#goronic-v1e1)
      - [greg\_rutkowski-v1e400](#greg_rutkowski-v1e400)
      - [hamgas-v1e400](#hamgas-v1e400)
      - [honovy-v1e4](#honovy-v1e4)
      - [jinxit-v1e10](#jinxit-v1e10)
      - [kame\_3-v1e80](#kame_3-v1e80)
      - [kenket-v1e4](#kenket-v1e4)
      - [louart-v1e10](#louart-v1e10)
      - [realistic-v4e400](#realistic-v4e400)
      - [skecchiart-v1e134](#skecchiart-v1e134)
      - [spectrumshift-v1e400](#spectrumshift-v1e400)
      - [squishy-v1e10](#squishy-v1e10)
      - [whisperingfornothing-v1e58](#whisperingfornothing-v1e58)
      - [wjs07-v1e200](#wjs07-v1e200)
      - [wolfy-nail-v1e400](#wolfy-nail-v1e400)
      - [woolrool-v1e4](#woolrool-v1e4)
    - [Character LoRAs](#character-loras)
      - [arielsatyr-v1e400](#arielsatyr-v1e400)
      - [amalia-v2e400](#amalia-v2e400)
      - [amicus-v1e200](#amicus-v1e200)
      - [auroth-v1e250](#auroth-v1e250)
      - [blaidd-v1e400](#blaidd-v1e400)
      - [martlet-v1e200](#martlet-v1e200)
      - [ramona-v1e400](#ramona-v1e400)
      - [tibetan-v2e500](#tibetan-v2e500)
      - [veemon-v1e400](#veemon-v1e400)
      - [hoodwink-v1e400](#hoodwink-v1e400)
      - [jayjay-v1e400](#jayjay-v1e400)
      - [foxparks-v2e134](#foxparks-v2e134)
      - [lovander-v3e10](#lovander-v3e10)
      - [skiltaire-v1e400](#skiltaire-v1e400)
      - [chillet-v3e10](#chillet-v3e10)
      - [maliketh-v1e1](#maliketh-v1e1)
      - [wickerbeast-v1e500](#wickerbeast-v1e500)
  - [Satisfied Customers](#satisfied-customers)

</details>
</div>

## Dataset Tools

I have uploaded all of the little handy Python scripts I use to [/dataset_tools](https://huggingface.co/k4d3/yiff_toolkit/tree/main/dataset_tools). They are pretty self explanatory by just the file name but almost all of them contain an AI generated descriptions. If you want to use them you will need to edit the path to your `training_dir` folder, the variable will be called `path` or `directory` and look something like this:

```py
def main():
    path = 'C:\\Users\\kade\\Desktop\\training_dir_staging'
```

Don't be afraid of editing Python scripts, unlike the real snake, these won't bite!

---

## Dataset Preparation

Before you begin collecting your dataset you will need to decide what you want to teach the model, it can be a character, a style or a new concept.

For now let's imagine you want to teach your model *wickerbeasts* so you can generate your VRChat avatar every night.

### Create the `training_dir` Directory

Before starting we need a directory where we'll organize our datasets. Open up a terminal by pressing `Win + R` and typing in `pwsh`. We will also be using [git](https://git-scm.com/download/win) and [huggingface](https://huggingface.co/) to version control our smut. For brevity I'll refrain from giving you a tutorial on both. Once you have your newly created dataset on HF ready lets clone it. Make sure you change `user` in the first line to your HF username!

```pwsh
git clone [email protected]:/datasets/user/training_dir C:\training_dir
cd C:\training_dir
git branch wickerbeast
git checkout wickerbeast
```

Let's continue with downloading some *wickerbeast* data but don't close the terminal window just yet, for this we'll make good use of the furry <abbr title="image board">booru</abbr> [e621.net](https://e621.net/). There are two nice ways to download data from this site with the metadata intact, I'll start with the fastest and then I will explain how you can selectively browse around the site and get the images you like one by one.

### Grabber

[Grabber](https://github.com/Bionus/imgbrd-grabber) makes your life easier when trying to compile datasets quickly from imageboards.

[![A screenshot of Grabber.](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/static/tutorial/grabber1.png)](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/static/tutorial/grabber1.png)

Clicking on the `Add` button on the Download tab lets you add a `group` which will get downloaded, `Tags` will be the where you can type in the search parameters like you would on e621.net, so for example the string `wickerbeast solo -comic -meme -animated order:score` will search for solo wickerbeast pictures without including comics, memes, and animated posts in descending order of their scores. For training SDXL LoRAs you usually won't need more than 50 images, but you should set the solo group to `40` and add a new group with `-solo` instead of `solo` and set the `Image Limit` to `10` for it to include some images with other characters in it. This will help the model learn a lot better!

You should also enable `Separate log files` for e621, this will download the metadata automatically alongside the pictures.

[![Another screenshot of Grabber.](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/static/tutorial/grabber2.png)](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/static/tutorial/grabber2.png)

For Pony I've set up the Text file content like so: `rating_%rating%, %all:separator=^, %` for other models you might want to replace `rating_%rating%` with just `%rating%`.

You should also set the `Folder` into which the images will get downloaded. Let's use `C:\training_dir\1_wickerbeast` for both groups.

Now you are ready to right-click on each group and download the images.

---

### Manual Method

This method requires a browser extension like [ViolentMonkey](https://violentmonkey.github.io/) and the following UserScript:

<div style="background-color: lightyellow; padding: 10px;">
  <details>
    <summary>Click to reveal userscript.</summary>

```js
// ==UserScript==
// @name e621 JSON Button
// @namespace https://cringe.live
// @version 1.0
// @description Adds a JSON button next to the download button on e621.net
// @author _ka_de
// @match https://e621.net/*
// @match https://e6ai.net/*
// @grant none
// ==/UserScript==

(function() {
  'use strict';

  function constructJSONUrl() {
    // Get the current URL
    var currentUrl = window.location.href;
    // Extract the post ID from the URL
    var postId = currentUrl.match(/^https?:\/\/(?:e621\.net|e6ai\.net)\/posts\/(\d+)/)[1];
    // Check the hostname
    var hostname = window.location.hostname;
    // Construct the JSON URL based on the hostname
    var jsonUrl = 'https://' + hostname + '/posts/' + postId + '.json';
    return jsonUrl;
  }

  function createJSONButton() {
    // Create a new button element
    var jsonButton = document.createElement('a');
    // Set the attributes for the button
    jsonButton.setAttribute('class', 'button btn-info');
    var jsonUrl = constructJSONUrl();
    // Set the JSON URL as the button's href attribute
    jsonButton.setAttribute('href', jsonUrl);
    // Set the inner HTML for the button
    jsonButton.innerHTML = '<i class="fa-solid fa-angle-double-right"></i><span>JSON</span>';

    // Find the container where we want to insert the button
    var container = document.querySelector('#post-options > li:last-child');

    // Check if the #image-extra-controls element exists
    if (document.getElementById('image-extra-controls')) {
      // Insert the button after the download button
      container = document.getElementById('image-download-link');
      container.insertBefore(jsonButton, container.children[0].nextSibling);
    } else {
      // Insert the button after the last li element in #post-options
      container.parentNode.insertBefore(jsonButton, container.nextSibling);
    }
  }

  // Run the function to create the JSON button
  createJSONButton();
})();
```

  </details>
</div>

This will put a link to the JSON next to the download button on e621.net and e6ai.net and you can use [this](https://huggingface.co/k4d3/yiff_toolkit/blob/main/dataset_tools/e621%20JSON%20to%20txt.ipynb) Python script to convert them to caption files, it uses the `rating_` prefix before `safe/questionable/explicit` because.. you've guessed it, Pony! It also lets you ignore the tags you add into `ignored_tags` using the `r"\btag\b",` syntax, just replace `tag` with the tag you want it to skip.

---

## Auto Taggers

### [eva02-vit-large-448-8046](https://huggingface.co/Thouph/eva02-vit-large-448-8046)

You want to install the only dependency, besides torch, I mean..

```bash
pip install timm
```

The following inference script for the tagger needs a folder as input, be warned that it also converts WebP images to PNG and you can specify tags to be ignored and some other stuff! I recommend reading through it and changing whatever you need.

<div style="background-color: lightyellow; padding: 10px;">
<details>
  <summary>Click to reveal inference script</summary>

```py
import os
import torch
from torchvision import transforms
from PIL import Image
import json
import re

# Set the threshold for tag selection
THRESHOLD = 0.3

# Define the directory containing the images and the path to the model
image_dir = r"./images"
model_path = r"./model.pth"

# Define the set of ignored tags
ignored_tags = {"grandfathered content"}

# Check if CUDA is available, else use CPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# Load the model and set it to evaluation mode
model = torch.load(model_path, map_location=device)
model = model.to(device)
model.eval()

# Define the image transformations
transform = transforms.Compose(
    [
        # Resize the images to 448x448
        transforms.Resize((448, 448)),
        # Convert the images to PyTorch tensors
        transforms.ToTensor(),
        # Normalize the images with the given mean and standard deviation
        transforms.Normalize(
            mean=[0.48145466, 0.4578275, 0.40821073],
            std=[0.26862954, 0.26130258, 0.27577711],
        ),
    ]
)

# Load the tags from the JSON file
with open("tags_8041.json", "r", encoding="utf8") as file:
    tags = json.load(file)
allowed_tags = sorted(tags)

# Add placeholders and explicitness tags to the list of allowed tags
allowed_tags.insert(0, "placeholder0")
allowed_tags.append("placeholder1")
allowed_tags.append("explicit")
allowed_tags.append("questionable")
allowed_tags.append("safe")

# Define the allowed image extensions
image_exts = [".jpg", ".jpeg", ".png"]

for filename in os.listdir(image_dir):
    # Check if the file is a WebP image
    if filename.endswith(".webp"):
        # Construct the input and output file paths
        input_path = os.path.join(image_dir, filename)
        output_path = os.path.join(image_dir, os.path.splitext(filename)[0] + ".png")

        # Open the WebP image and save it as a PNG
        image = Image.open(input_path)
        image.save(output_path, "PNG")
        print(f"Converted {filename} to {os.path.basename(output_path)}")

        # Delete the original WebP image
        os.remove(input_path)
        print(f"Deleted {filename}")

# Get the list of image files in the directory
image_files = [
    file
    for file in os.listdir(image_dir)
    if os.path.splitext(file)[1].lower() in image_exts
]

for image_filename in image_files:
    image_path = os.path.join(image_dir, image_filename)

    # Open the image
    img = Image.open(image_path)

    # If the image has an alpha channel, replace it with black
    if img.mode in ("RGBA", "LA") or (img.mode == "P" and "transparency" in img.info):
        alpha = Image.new(
            "L", img.size, 0
        )  # Create alpha image with mode 'L' (8-bit grayscale)
        alpha = alpha.convert(img.mode)  # Convert alpha image to same mode as img
        img = Image.alpha_composite(alpha, img)

    # Convert the image to RGB
    img = img.convert("RGB")

    # Apply the transformations and move the tensor to the device
    tensor = transform(img).unsqueeze(0).to(device)

    # Make a forward pass through the model and get the output
    with torch.no_grad():
        out = model(tensor)

    # Apply the sigmoid function to the output to get probabilities
    probabilities = torch.sigmoid(out[0])

    # Get the indices of the tags with probabilities above the threshold
    indices = torch.where(probabilities > THRESHOLD)[0]
    values = probabilities[indices]

    # Sort the indices by the corresponding probabilities in descending order
    sorted_indices = torch.argsort(values, descending=True)

    # Get the tags corresponding to the sorted indices, excluding ignored tags and replacing underscores with spaces
    tags_to_write = [
        allowed_tags[indices[i]].replace("_", " ")
        for i in sorted_indices
        if allowed_tags[indices[i]] not in ignored_tags
        and allowed_tags[indices[i]] not in ("placeholder0", "placeholder1")
    ]

    # Replace 'safe', 'explicit', and 'questionable' with their 'rating_' counterparts
    tags_to_write = [
        tag.replace("safe", "rating_safe")
        .replace("explicit", "rating_explicit")
        .replace("questionable", "rating_questionable")
        for tag in tags_to_write
    ]

    # Escape unescaped parentheses in the tags
    tags_to_write_escaped = [
        re.sub(r"(?<!\\)(\(|\))", r"\\\1", tag) for tag in tags_to_write
    ]

    # Create a text file for each image with the filtered and escaped tags
    text_filename = os.path.splitext(image_filename)[0] + ".txt"
    text_path = os.path.join(image_dir, text_filename)
    with open(text_path, "w", encoding="utf8") as text_file:
        text_file.write(", ".join(tags_to_write_escaped))
```

</details>
</div>

## LoRA Training Guide

### Installation Tips

---

Firstly, download kohya_ss' [sd-scripts](https://github.com/kohya-ss/sd-scripts), you need to set up your environment either like [this](https://github.com/kohya-ss/sd-scripts?tab=readme-ov-file#windows-installation) tells you for Windows, or if you are using Linux or Miniconda on Windows, you are probably smart enough to figure out the installation for it. I recommend always installing the latest [PyTorch](https://pytorch.org/get-started/locally/) in the virtual environment you are going to use, which at the time of writing is `2.2.2`. I hope future me has faster PyTorch!

Ok, just in case you aren't smart enough how to install the sd-scripts under Miniconda for Windows I actually "guided" someone recently, just so I can tell you about it:

```bash
# Installing sd-scripts
git clone https://github.com/kohya-ss/sd-scripts
cd sd-scripts

# Creating the conda environment and installing requirements
conda create -n sdscripts python=3.10.14
conda activate sdscripts
conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia
python -m pip install --use-pep517 --upgrade -r requirements.txt
python -m pip install --use-pep517 lycoris_lora
accelerate config
```

`accelerate config` will ask you a bunch of questions, you need to actually read each one and reply with the truth. In most cases the truth looks like this: `This machine, No distributed training, no, no, no, all, fp16`.

You might also want to install `xformers` or `bitsandbytes`.

```bash
# Installing xformers
# Use the same command just replace 'xformers' with any other package you may need.
python -m pip install --use-pep517 xformers

# Installing bitsandbytes for windows
python -m pip install --use-pep517 bitsandbytes --index-url=https://jllllll.github.io/bitsandbytes-windows-webui
```

---

### Pony Training

---

I'm not going to lie, it is a bit complicated to explain everything. But here is my best attempt going through some "basic" stuff and almost all lines in order.

#### Download Pony in Diffusers Format

I'm using the diffusers version for training I converted, you can download it using `git`.

```bash
git clone https://huggingface.co/k4d3/ponydiffusers
```

---

#### Sample Prompt File

A sample prompt file is used during training to sample images. A sample prompt for example might look like this for Pony:

```py
# anthro female kindred
score_9, score_8_up, score_7_up, score_6_up, rating_explicit, source_furry, solo, female anthro kindred, mask, presenting, white pillow, bedroom, looking at viewer, detailed background, amazing_background, scenery porn, realistic, photo --n low quality, worst quality, blurred background, blurry, simple background --w 1024 --h 1024 --d 1 --l 6.0 --s 40
# anthro female wolf
score_9, score_8_up, score_7_up, score_6_up, rating_explicit, source_furry, solo, anthro female wolf, sexy pose, standing, gray fur, brown fur, canine pussy, black nose, blue eyes, pink areola, pink nipples, detailed background, amazing_background, realistic, photo --n low quality, worst quality, blurred background, blurry, simple background --w 1024 --h 1024 --d 1 --l 6.0 --s 40
```

Please note that sample prompts should not exceed 77 tokens, you can use [Count Tokens in Sample Prompts](https://huggingface.co/k4d3/yiff_toolkit/blob/main/dataset_tools/Count%20Tokens%20in%20Sample%20Prompts.ipynb) from [/dataset_tools](https://huggingface.co/k4d3/yiff_toolkit/tree/main/dataset_tools) to analyze your prompts.

If you are training with multiple GPUs, ensure that the total number of prompts is divisible by the number of GPUs without any remainder or a card will idle.

---

#### Training Commands

---

##### `accelerate launch`

For two GPUs:

```python
accelerate launch --num_processes=2 --multi_gpu --num_machines=1 --gpu_ids=0,1 --num_cpu_threads_per_process=2  "./sdxl_train_network.py"
```

Single GPU:

```python
accelerate launch --num_cpu_threads_per_process=2 "./sdxl_train_network.py"
```

---
&nbsp;

And now lets break down a bunch of arguments we can pass to `sd-scripts`.

&nbsp;

##### `--lowram`

If you are running running out of system memory like I do with 2 GPUs and a really fat model that gets loaded into it per GPU, this option will help you save a bit of it and might get you out of OOM hell.

---

##### `--pretrained_model_name_or_path`

The directory containing the checkpoint you just downloaded. I recommend closing the path if you are using a local diffusers model with a `/`. You can also specify a `.safetensors` or `.ckpt` if that is what you have!

```python
    --pretrained_model_name_or_path="/ponydiffusers/"
```

---

##### `--output_dir`

This is where all the saved epochs or steps will be saved, including the last one. If y

```python
    --output_dir="/output_dir"
```

---

##### `--train_data_dir`

The directory containing the dataset. We prepared this earlier together.

```python
    --train_data_dir="/training_dir"
```

---

##### `--resolution`

Always set this to match the model's resolution, which in Pony's case it is 1024x1024. If you can't fit into the VRAM, you can decrease it to `512,512` as a last resort.

```python
    --resolution="1024,1024"
```

---

##### `--enable_bucket`

Creates different buckets by pre-categorizing images with different aspect ratios into different buckets. This technique helps to avoid issues like unnatural crops that are common when models are trained to produce square images. This allows the creation of batches where every item has the same size, but the image size of batches may differ.

---

##### `--min_bucket_reso` and `--max_bucket_reso`

Specifies the minimum and maximum resolutions used by the buckets. These values are ignored if `--bucket_no_upscale` is set.

```python
    --min_bucket_reso=256 --max_bucket_reso=1024
```

---

##### `--network_alpha`

Specifies how many of the trained Network Ranks are allowed to alter the base model.

```python
    --network_alpha=4
```

---

##### `--save_model_as`

You can use this to specify either `ckpt` or `safetensors` for the file format.

```python
    --save_model_as="safetensors"
```

---

##### `--network_module`

Specifies which network module you are going to train.

```python
    --network_module="lycoris.kohya"
```

---

##### `--network_args`

The arguments passed down to the network.

```python
    --network_args \
               "use_reentrant=False" \
               "preset=full" \
               "conv_dim=256" \
               "conv_alpha=4" \
               "use_tucker=False" \
               "use_scalar=False" \
               "rank_dropout_scale=False" \
               "algo=locon" \
               "train_norm=False" \
               "block_dims=8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8" \
               "block_alphas=0.0625,0.0625,0.0625,0.0625,0.0625,0.0625,0.0625,0.0625,0.0625,0.0625,0.0625,0.0625,0.0625,0.0625,0.0625,0.0625,0.0625,0.0625,0.0625,0.0625,0.0625,0.0625,0.0625,0.0625,0.0625" \
```

**Let's break it down!**

---

###### `preset`

The [Preset](https://github.com/KohakuBlueleaf/LyCORIS/blob/HEAD/docs/Preset.md)/config system added to LyCORIS for more fine-grained control.

- `full`
  - default preset, train all the layers in the UNet and CLIP.
- `full-lin`
  - `full` but skip convolutional layers.
- `attn-mlp`
  - "kohya preset", train all the transformer block.
- `attn-only`
  - only attention layer will be trained, lot of papers only do training on attn layer.
- `unet-transformer-only`
  - as same as kohya_ss/sd_scripts with disabled TE, or, attn-mlp preset with train_unet_only enabled.
- `unet-convblock-only`
  - only ResBlock, UpSample, DownSample will be trained.

---

###### `conv_dim` and `conv_alpha`

The convolution dimensions are related to the rank of the convolution in the model, adjusting this value can have a [significant impact](https://ashejunius.com/alpha-and-dimensions-two-wild-settings-of-training-lora-in-stable-diffusion-d7ad3e3a3b0a) and lowering it affected the aesthetic differences between different LoRA samples. and an alpha value of `128` was used for training a specific character's face while Kohaku recommended to set this to `1` for both LoCon and LoHa.

```python
conv_block_dims = [conv_dim] * num_total_blocks
conv_block_alphas = [conv_alpha] * num_total_blocks
```

---

###### `module_dropout` and `dropout` and `rank_dropout`

[![An AI generated image.](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/static/tutorial/dropout1.png)](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/static/tutorial/dropout1.png)

`rank_dropout` is a form of dropout, which is a regularization technique used in neural networks to prevent overfitting and improve generalization. However, unlike traditional dropout which randomly sets a proportion of inputs to zero, `rank_dropout` operates on the rank of the input tensor `lx`. First a binary mask is created with the same rank as `lx` with each element set to `True` with probability `1 - rank_dropout` and `False` otherwise. Then the `mask` is applied to `lx` to randomly set some of its elements to zero. After applying the dropout, a scaling factor is applied to `lx` to compensate for the dropped out elements. This is done to ensure that the expected sum of `lx` remains the same before and after dropout. The scaling factor is `1.0 / (1.0 - self.rank_dropout)`.

It’s called β€œrank” dropout because it operates on the rank of the input tensor, rather than its individual elements. This can be particularly useful in tasks where the rank of the input is important.

If `rank_dropout` is set to `0`, it means that no dropout is applied to the rank of the input tensor `lx`. All elements of the mask would be set to `True` and when the mask gets applied to `lx` all of it's elements would be retained and when the scaling factor is applied after dropout it's value would just equal `self.scale` because `1.0 / (1.0 - 0)` is `1`. Basically, setting this to `0` effectively disables the dropout mechanism but it will still do some meaningless calculations, and you can't set it to None, so if you really want to disable dropouts simply don't specify them! πŸ˜‡

```python
def forward(self, x):
    org_forwarded = self.org_forward(x)

    # module dropout
    if self.module_dropout is not None and self.training:
        if torch.rand(1) < self.module_dropout:
            return org_forwarded

    lx = self.lora_down(x)

    # normal dropout
    if self.dropout is not None and self.training:
        lx = torch.nn.functional.dropout(lx, p=self.dropout)

    # rank dropout
    if self.rank_dropout is not None and self.training:
        mask = torch.rand((lx.size(0), self.lora_dim), device=lx.device) > self.rank_dropout
        if len(lx.size()) == 3:
            mask = mask.unsqueeze(1)
        elif len(lx.size()) == 4:
            mask = mask.unsqueeze(-1).unsqueeze(-1)
        lx = lx * mask

        scale = self.scale * (1.0 / (1.0 - self.rank_dropout)) 
    else:
        scale = self.scale

    lx = self.lora_up(lx)

    return org_forwarded + lx * self.multiplier * scale
```

The network you are training needs to support it though! See [PR#545](https://github.com/kohya-ss/sd-scripts/pull/545) for more details.

---

###### `use_tucker`

Can be used for all but `(IA)^3` and native fine-tuning.

Tucker decomposition is a method in mathematics that decomposes a tensor into a set of matrices and one small core tensor reducing the computational complexity and memory requirements of the model. It is used in various LyCORIS modules on various blocks. In LoCon for example, if `use_tucker` is `True` and the kernel size `k_size` is not `(1, 1)`, then the convolution operation is decomposed into three separate operations.

1. A 1x1 convolution that reduces the number of channels from `in_dim` to `lora_dim`.
2. A convolution with the original kernel size `k_size`, stride `stride`, and padding `padding`, but with a reduced number of channels `lora_dim`.
3. A 1x1 convolution that increases the number of channels back from `lora_dim` to `out_dim`.

If `use_tucker` is `False` or not set, or if the kernel size k_size is `(1, 1)`, then a standard convolution operation is performed with the original kernel size, stride, and padding, and the number of channels is reduced from `in_dim` to `lora_dim`.

---

###### `use_scalar`

An additional learned parameter that scales the contribution of the low-rank weights before they are added to the original weights. This scalar can control the extent to which the low-rank adaptation modifies the original weights. By training this scalar, the model can learn the optimal balance between preserving the original pre-trained weights and allowing for low-rank adaptation.

```python
# Check if the 'use_scalar' flag is set to True
if use_scalar:
    # If True, initialize a learnable parameter 'scalar' with a starting value of 0.0.
    # This parameter will be optimized during the training process.
    self.scalar = nn.Parameter(torch.tensor(0.0))
else:
    # If the 'use_scalar' flag is False, set 'scalar' to a fixed value of 1.0.
    # This means the low-rank weights will be added to the original weights without scaling.
    self.scalar = torch.tensor(1.0)
```

The `use_scalar` flag allows the model to determine how much influence the low-rank weights should have on the final weights. If `use_scalar` is `True`, the model can learn the optimal value for `self.scalar` during training, which multiplies the low-rank weights before they are added to the original weights. This provides a way to balance between the original pre-trained weights and the new low-rank adaptations, potentially leading to better performance and more efficient training. The initial value of `0.0` for `self.scalar` suggests that the model starts with no contribution from the low-rank weights and learns the appropriate scale during training.

---

###### `rank_dropout_scale`

A boolean flag that determines whether to scale the dropout mask to have an average value of `1` or not. This is particularly useful when you want to maintain the original scale of the tensor values after applying dropout, which can be important for the stability of the training process.

```python
def forward(self, orig_weight, org_bias, new_weight, new_bias, *args, **kwargs):
    # Retrieve the device that the 'oft_blocks' tensor is on. This ensures that any new tensors created are on the same device.
    device = self.oft_blocks.device
    
    # Check if rank dropout is enabled and the model is in training mode.
    if self.rank_dropout and self.training:
        # Create a random tensor the same shape as 'oft_blocks', with values drawn from a uniform distribution.
        # Then create a dropout mask by checking if each value is less than 'self.rank_dropout' probability.
        drop = (torch.rand(self.oft_blocks, device=device) < self.rank_dropout).to(
            self.oft_blocks.dtype
        )
        
        # If 'rank_dropout_scale' is True, scale the dropout mask to have an average value of 1.
        # This helps maintain the scale of the tensor's values after dropout is applied.
        if self.rank_dropout_scale:
            drop /= drop.mean()
    else:
        # If rank dropout is not enabled or the model is not in training mode, set 'drop' to 1 (no dropout).
        drop = 1
```

---

###### `algo`

The LyCORIS algorithm used, you can find a [list](https://github.com/KohakuBlueleaf/LyCORIS/blob/HEAD/docs/Algo-List.md) of the implemented algorithms and an [explanation](https://github.com/KohakuBlueleaf/LyCORIS/blob/HEAD/docs/Algo-Details.md) of them, with a [demo](https://github.com/KohakuBlueleaf/LyCORIS/blob/HEAD/docs/Demo.md) you can also dig into the [research paper](https://arxiv.org/pdf/2309.14859.pdf).

---

###### `train_norm`

Controls whether to train normalization layers used by all algorithms except `(IA)^3` or not.

---

###### `block_dims`

Specify the rank of each block, it takes exactly 25 numbers, that is why this line is so long.

---

###### `block_alphas`

Specifies the alpha of each block, this too also takes 25 numbers if you don't specify it `network_alpha` will be used instead for the value.

---

That concludes the `network_args`.

---

##### `--network_dropout`

This float controls the drop of neurons out of training every step, `0` or `None` is default behavior (no dropout), 1 would drop all neurons. Using `weight_decompose=True` will ignore `network_dropout` and only rank and module dropout will be applied.

```python
    --network_dropout=0 \
```

---

##### `--lr_scheduler`

A learning rate scheduler in PyTorch is a tool that adjusts the learning rate during the training process. It’s used to modulate the learning rate in response to how the model is performing, which can lead to increased performance and reduced training time.

Possible values: `linear`, `cosine`, `cosine_with_restarts`, `polynomial`, `constant` (default), `constant_with_warmup`, `adafactor`

Note, `adafactor` scheduler can only be used with the `adafactor` optimizer!

```python
    --lr_scheduler="cosine" \
```

---

##### `--lr_scheduler_num_cycles`

Number of restarts for cosine scheduler with restarts. It isn't used by any other scheduler.

```py
    --lr_scheduler_num_cycles=1 \
```

---

##### `--learning_rate` and `--unet_lr` and `--text_encoder_lr`

The learning rate determines how much the weights of the network are updated in response to the estimated error each time the weights are updated. If the learning rate is too large, the weights may overshoot the optimal solution. If it’s too small, the weights may get stuck in a suboptimal solution.

For AdamW the optimal LR seems to be `0.0001` or `1e-4` if you want to impress your friends.

```py
    --learning_rate=0.0001 --unet_lr=0.0001 --text_encoder_lr=0.0001
```

---

##### `--network_dim`

The Network Rank (Dimension) is responsible for how many features your LoRA will be training. It is in a close relation with Network Alpha and the Unet + TE learning rates and of course the quality of your dataset. Personal experimentation with these values is strongly recommended.

```py
    --network_dim=8
```

---

##### `--output_name`

Specify the output name excluding the file extension.

**WARNING**: If for some reason this is ever left empty your last epoch won't be saved!

```py
    --output_name="last"
```

---

##### `--scale_weight_norms`

Max-norm regularization is a technique that constrains the norm of the incoming weight vector at each hidden unit to be upper bounded by a fixed constant. It prevents the weights from growing too large and helps improve the performance of stochastic gradient descent training of deep neural nets.

Dropout affects the network architecture without changing the weights, while Max-Norm Regularization directly modifies the weights of the network. Both techniques are used to prevent overfitting and improve the generalization of the model. You can learn more about both in this [research paper](https://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf).

```py
    --scale_weight_norms=1.0
```

---

##### `--max_grad_norm`

Also known as Gradient Clipping, if you notice that gradients are exploding during training (loss becomes NaN or very large), consider adjusting the `--max_grad_norm` parameter, it operates on the gradients during the backpropagation process, while `--scale_weight_norms` operates on the weights of the neural network. This allows them to complement each other and provide a more robust approach to stabilizing the learning process and improving model performance.

```py
    --max_grad_norm=1.0
```

---

##### `--no_half_vae`

Disables mixed precision for the SDXL VAE and sets it to `float32`. Very useful if you don't like NaNs.

---

##### `--save_every_n_epochs` and `--save_last_n_epochs` or `--save_every_n_steps` and `--save_last_n_steps`

- `--save_every_n_steps` and `--save_every_n_epochs`: A LoRA file will be created at each n-th step or epoch specified here.
- `--save_last_n_steps` and `--save_last_n_epochs`: Discards every saved file except for the last `n` you specify here.

Learning will always end with what you specify in `--max_train_epochs` or `--max_train_steps`.

```py
    --save_every_n_epochs=50
```

---

##### `--mixed_precision`

⚠️

```py
    --mixed_precision="fp16"
```

---

##### `--save_precision`

⚠️

```py
    --save_precision="fp16"
```

---

##### `--caption_extension`

The file extension for caption files. Default is `.caption`. These caption files contain text descriptions that are associated with the training images. When you run the training script, it will look for files with this specified extension in the training data folder. The script uses the content of these files as captions to provide context for the images during the training process.

For example, if your images are named `image1.jpg`, `image2.jpg`, and so on, and you use the default .caption extension, the script will expect the caption files to be named `image1.caption`, `image2.caption`, etc. If you want to use a different extension, like `.txt`, you would set the caption_extension parameter to `.txt`, and the script would then look for `image1.txt`, `image2.txt`, and so on.

```py
    --caption_extension=".txt"
```

##### `--cache_latents` and `--cache_latents_to_disk`

⚠️

```py
    --cache_latents --cache_latents_to_disk
```

---

##### `--optimizer_type`

The default optimizer is `AdamW` and there are a bunch of them added every month or so, therefore I'm not listing them all, you can find the list if you really want, but `AdamW` is the best as of this writing so we use that!

```py
    --optimizer_type="AdamW"
```

---

##### `--dataset_repeats`

Repeats the dataset when training with captions, by default it is set to `1` so we'll set this to `0` with:

```py
    --dataset_repeats=0
```

---

##### `--max_train_steps`

Specify the number of steps or epochs to train. If both `--max_train_steps` and `--max_train_epochs` are specified, the number of epochs takes precedence.

```py
    --max_train_steps=400
```

---

##### `--shuffle_caption`

Shuffles the captions set by `--caption_separator`, it is a comma `,` by default which will work perfectly for our case since our captions look like this:

> rating_questionable, 5 fingers, anthro, bent over, big breasts, blue eyes, blue hair, breasts, butt, claws, curved horn, female, finger claws, fingers, fur, hair, huge breasts, looking at viewer, looking back, looking back at viewer, nipples, nude, pink body, pink hair, pink nipples, rear view, solo, tail, tail tuft, tuft, by lunarii, by x-leon-x, mythology, krystal \(darkmaster781\), dragon, scalie, wickerbeast, The image showcases a pink-scaled wickerbeast a furred dragon creature with blue eyes., She has large breasts and a thick tail., Her blue and pink horns are curved and pointy and she has a slight smiling expression on her face., Her scales are shiny and she has a blue and pink pattern on her body., Her hair is a mix of pink and blue., She is looking back at the viewer with a curious expression., She has a slight blush.,

As you can tell, I have separated the caption part not just the tags with a `,` to make sure everything gets shuffled. I'm at this point pretty certain this is beneficial especially when your caption file contains more than 77 tokens.

NOTE: `--cache_text_encoder_outputs` and `--cache_text_encoder_outputs_to_disk` can't be used together with `--shuffle_caption`. Both of these aim to reduce VRAM usage, you will need to decide between these yourself!

---

##### `--sdpa` or `--xformers` or `--mem_eff_attn`

Each of these options modifies the attention mechanism used in the model, which can have a significant impact on the model's performance and memory usage. The choice between `--xformers` or `--mem_eff_attn` and `--spda` will depend on your GPU. You can benchmark it by repeating a training with them!

- `--xformers`: This flag enables the use of XFormers in the model. XFormers is a library developed by Facebook Research that provides a collection of transformer models optimized for different hardware and use-cases. These models are designed to be highly efficient, flexible, and customizable. They offer various types of attention mechanisms and other features that can be beneficial in scenarios where you have limited GPU memory or need to handle large-scale data.
- `--mem_eff_attn`: This flag enables the use of memory-efficient attention mechanisms in the model. The memory-efficient attention is designed to reduce the memory footprint during the training of transformer models, which can be particularly beneficial when working with large models or datasets.
- `--sdpa`: This option enables the use of Scaled Dot-Product Attention (SDPA) within the model. SDPA is a fundamental component of transformer models that calculates the attention scores between queries and keys. It scales the dot products by the dimensionality of the keys to stabilize gradients during training. This mechanism is particularly useful for handling long sequences and can potentially improve the model’s ability to capture long-range dependencies.

```python
    --sdpa
```

---

##### `--multires_noise_iterations` and `--multires_noise_discount`

Multi-resolution noise is a new approach that adds noise at multiple resolutions to an image or latent image during the training of diffusion models. A model trained with this technique can generate visually striking images with a distinct aesthetic compared to the usual outputs of diffusion models.

A model trained with multi-resolution noise can generate a more diverse range of images than regular stable diffusion, including extremely light or dark images. These have historically been challenging to achieve without resorting to using a large number of sampling steps.

This technique is particularly beneficial when working with small datasets but you I don't think you should ever not use it.

The `--multires_noise_discount` parameter controls the extent to which the noise amount at each resolution is weakened. A value of 0.1 is recommended. The `--multires_noise_iterations` parameter determines the number of iterations for adding multi-resolution noise, with a recommended range of 6 to 10.

Please note that `--multires_noise_discount` has no effect without `--multires_noise_iterations`.

###### Implementation Details

The `get_noise_noisy_latents_and_timesteps` function samples noise that will be added to the latents. If `args.noise_offset` is true, it applies a noise offset. If `args.multires_noise_iterations` is true, it applies multi-resolution noise to the sampled noise.

The function then samples a random timestep for each image and adds noise to the latents according to the noise magnitude at each timestep. This is the forward diffusion process.

The `pyramid_noise_like` function generates noise with a pyramid structure. It starts with the original noise and adds upscaled noise at decreasing resolutions. The noise at each level is scaled by a discount factor raised to the power of the level. The noise is then scaled back to roughly unit variance. This function is used to implement the multi-resolution noise.

```python
    --multires_noise_iterations=10 --multires_noise_discount=0.1
```

---

##### `--sample_prompts` and `--sample_sampler` and `--sample_every_n_steps`

You have the option of generating images during training so you can check the progress, the argument let's you pick between different samplers, by default it is on `ddim`, so you better change it!

 You can also use `--sample_every_n_epochs` instead which will take precedence over steps. The `k_` prefix means karras and the `_a` suffix means ancestral.

```py
    --sample_prompts=/training_dir/sample-prompts.txt --sample_sampler="euler_a" --sample_every_n_steps=100
```

My recommendation for Pony is to use `euler_a` for toony and for realistic `k_dpm_2`.

Your sampler options include the following:

```bash
ddim, pndm, lms, euler, euler_a, heun, dpm_2, dpm_2_a, dpmsolver, dpmsolver++, dpmsingle, k_lms, k_euler, k_euler_a, k_dpm_2, k_dpm_2_a
```

---

So, the whole thing would look something like this:

```python
accelerate launch --num_cpu_threads_per_process=2  "./sdxl_train_network.py" \
    --lowram \
    --pretrained_model_name_or_path="/ponydiffusers/" \
    --train_data_dir="/training_dir" \
    --resolution="1024,1024" \
    --output_dir="/output_dir" \
    --enable_bucket \
    --min_bucket_reso=256 \
    --max_bucket_reso=1024 \
    --network_alpha=4 \
    --save_model_as="safetensors" \
    --network_module="lycoris.kohya" \
    --network_args \ 
               "preset=full" \
               "conv_dim=256" \
               "conv_alpha=4" \
               "use_tucker=False" \
               "use_scalar=False" \
               "rank_dropout_scale=False" \
               "algo=locon" \
               "train_norm=False" \
               "block_dims=8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8" \
               "block_alphas=0.0625,0.0625,0.0625,0.0625,0.0625,0.0625,0.0625,0.0625,0.0625,0.0625,0.0625,0.0625,0.0625,0.0625,0.0625,0.0625,0.0625,0.0625,0.0625,0.0625,0.0625,0.0625,0.0625,0.0625,0.0625" \
    --network_dropout=0 \
    --lr_scheduler="cosine" \
    --learning_rate=0.0001 \
    --unet_lr=0.0001 \
    --text_encoder_lr=0.0001 \
    --network_dim=8 \
    --output_name="yifftoolkit" \
    --scale_weight_norms=1 \
    --no_half_vae \
    --save_every_n_epochs=50 \
    --mixed_precision="fp16" \
    --save_precision="fp16" \
    --caption_extension=".txt" \
    --cache_latents \
    --cache_latents_to_disk \
    --optimizer_type="AdamW" \
    --max_grad_norm=1 \
    --keep_tokens=1 \
    --max_data_loader_n_workers=8 \
    --bucket_reso_steps=32 \
    --multires_noise_iterations=10 \
    --multires_noise_discount=0.1 \
    --log_prefix=xl-locon \
    --gradient_accumulation_steps=12 \
    --gradient_checkpointing \
    --train_batch_size=8 \
    --dataset_repeats=0 \
    --max_train_steps=400 \
    --shuffle_caption \
    --sdpa \
    --sample_prompts=/training_dir/sample-prompts.txt \
    --sample_sampler="euler_a" \
    --sample_every_n_steps=100
```

---

## Embeddings for 1.5 and SDXL

Embeddings in Stable Diffusion are high-dimensional representations of input data, such as images or text, that capture their essential features and relationships. These embeddings are used to guide the diffusion process, enabling the model to generate outputs that closely match the desired characteristics specified in the input.

You can find in the [`/embeddings`](https://huggingface.co/k4d3/yiff_toolkit/tree/main/embeddings) folder a whole bunch of them I collected for SD 1.5 that I later converted with [this](https://huggingface.co/spaces/FoodDesert/Embedding_Converter) tool for SDXL.

## ComfyUI Walkthrough any%

⚠️ Coming next year! ⚠️

---

## AnimateDiff for Masochists

⚠️ Coming in 2026! ⚠️

---

## Stable Cascade Furry Bible

### Resonance Cascade

πŸ†

---

## SDXL Furry Bible

### Some Common Knowledge Stuff

[Resolution Lora](https://huggingface.co/jiaxiangc/res-adapter/resolve/main/sdxl-i/resolution_lora.safetensors?download=true) is a nice thing to have, it will help with consistency. For SDXL it is just a LoRA you can load in and it will do its magic. No need for a custom node or extension in this case.

### SeaArt Furry

---

SeaArt's furry model sadly has its cons not just pros, yes it might come with artist knowledge bundled, but it seems to have trouble doing more than one character or everyone is bad at prompting, oh and it uses raw e621 tags, which just means you have to use underscores `_` instead of spaces&nbsp;` `&nbsp; inside the tags.

⚠️ TODO: Prompting tips.

### Pony Diffusion V6

---

#### Requirements

Download the [model](https://civitai.com/models/257749/pony-diffusion-v6-xl) and load it in to whatever you use to generate images.

#### Positive Prompt Stuff

```python
score_9, score_8_up, score_7_up, score_6_up, rating_explicit, source_furry, 
```

I just assumed you wanted *explicit* and *furry*, you can also set the rating to `rating_safe` or `rating_questionable` and the source to `source_anime`, `source_cartoon`, `source_pony`, `source_rule34` and optionally mix them however you'd like. Its your life! `score_9` is an interesting tag, the model seems to have put all it's "*artsy*" knowledge. You might want to check if it is for your taste. The other interesting tag is `score_5_up` which seems to have learned a little bit of everything regarding quality while `score_4_up` seems to be at the bottom of the autism spectrum regarding art, I do not recommend using it, but you can do whatever you want!

You can talk to Pony in three ways, use tags only, tags are neat, but you can also just type in
`The background is of full white marble towers in greek architecture style and a castle.` and use natural language to the fullest extent, but the best way is to mix it both, its actually recommended since the score tags by definition are tags, and you need to use them! There are also artist styles that seeped into some random tokens during training, there is a community effort by some weebs to sort them [here](https://lite.framacalc.org/4ttgzvd0rx-a6jf).

Other nice words to have in the box depending on your mood:

```python
detailed background, amazing_background, scenery porn
```

Other types of backgrounds include:

```python
simple background, abstract background, spiral background, geometric background, heart background, gradient background, monotone background, pattern background, dotted background, stripped background, textured background, blurred background
```

After `simple background` you can also define a color for the background like `white background` to get a simple white background.

For the character portrayal you can set many different types:

```python
three-quarter view, full-length portrait, headshot portrait, bust portrait, half-length portrait, torso shot
```

Its a good thing to describe your subject or subjects start with `solo` or `duo` or maybe `trio, group` , and then finally start describing your character in an interesting situation.

#### Negative Prompt Stuff

⚠️

#### How to Prompt Female Anthro Lions

```python
anthro ⚠️?
```

---

## Pony Diffusion V6 LoRAs

All LoRAs listed here are actually LyCORIS with the exception of `blue_frost` which is just a regular LoRA. This might be important in case the software you use makes you put them in separate folders or if you are generating from a cute Python script.

### Concept Loras

#### small_dom_big_sub-v1e400

- [⬇️ Download](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/ponyxl_loras/small_dom_big_sub-v2e400.safetensors?download=true)
- [πŸ“Š Metadata](https://huggingface.co/k4d3/yiff_toolkit/raw/main/ponyxl_loras/small_dom_big_sub-v2e400.json)

<!-- ⚠️ --->

---

#### analbeads-v1e400

- [⬇️ Download](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/ponyxl_loras/analbeads-v1e400.safetensors?download=true)
- [πŸ“Š Metadata](https://huggingface.co/k4d3/yiff_toolkit/raw/main/ponyxl_loras/analbeads-v1e400.json)

<!-- ⚠️ --->

---

#### bdsm-v1e400

- [⬇️ Download](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/ponyxl_loras/bdsm-v1e400.safetensors?download=true)
- [πŸ“Š Metadata](https://huggingface.co/k4d3/yiff_toolkit/raw/main/ponyxl_loras/bdsm-v1e400.json)

<!-- ⚠️ --->

---

#### blue_frost

- [⬇️ Download](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/ponyxl_loras/blue_frost.safetensors?download=true)
- [πŸ“Š Metadata](https://huggingface.co/k4d3/yiff_toolkit/raw/main/ponyxl_loras/blue_frost.json)

A bit of an experiment trying to make generating kitsch winter scenes easier. Originally trained for base SDXL, but it seems to work with PonyXL just fine. If you can call kitsch fine, anyway..

<!-- ⚠️ --->

---

#### cervine_penis-v1e400

- [⬇️ Download](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/ponyxl_loras/cervine_penis-v1e400.safetensors?download=true)
- [πŸ“Š Metadata](https://huggingface.co/k4d3/yiff_toolkit/raw/main/ponyxl_loras/cervine_penis-v1e400.json)

<!-- ⚠️ --->

---

#### non-euclidean_sex-v1e400

- [⬇️ Download](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/ponyxl_loras/non-euclidean_sex-v1e400.safetensors?download=true)
- [πŸ“Š Metadata](https://huggingface.co/k4d3/yiff_toolkit/raw/main/ponyxl_loras/non-euclidean_sex-v1e400.json)

<!-- ⚠️ --->

---

#### space-v1e500

- [⬇️ Download](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/ponyxl_loras/space-v1e500.safetensors?download=true)
- [πŸ“Š Metadata](https://huggingface.co/k4d3/yiff_toolkit/raw/main/ponyxl_loras/space-v1e500.json)

```js
// Keywords:
by hubble
by jwst

// Example Positive Prompts:
by jwst, a galaxy, photo
by jwst, a red and blue galaxy
by hubble, a galaxy, photo


// Negative Prompt:
cropped,

blurry, wtf, old art, where is your god now, abstract background, simple background, cropped
```

<div style="background-color: lightyellow; padding: 10px;">
<details>
  <summary>Click to reveal images.</summary>

[![An AI generated image.](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/static/space/00000890-04092251-512.png)](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/static/space/00000890-04092251.png) [![An AI generated image.](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/static/space/00000893-04092315-512.png)](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/static/space/00000893-04092315.png) [![An AI generated image.](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/static/space/00000895-04092334-512.png)](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/static/space/00000895-04092334.png) [![An AI generated image.](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/static/space/00000953-04111037-512.png)](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/static/space/00000953-04111037.png) [![An AI generated image.](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/static/space/00000955-04111040-512.png)](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/static/space/00000955-04111040.png)
</details>
</div>

#### spacengine-v1e500

- [⬇️ Download](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/ponyxl_loras/spaceengine-v1e500.safetensors?download=true)
- [πŸ“Š Metadata](https://huggingface.co/k4d3/yiff_toolkit/raw/main/ponyxl_loras/spaceengine-v1e500.json)

```js
// Keyword
by spaceengine

// Example Prompt:
by spaceengine, a planet, black background
```

<!-- ⚠️ --->

### Artist/Style LoRAs

#### blp-v1e400

- [⬇️ Download](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/ponyxl_loras/blp-v1e400.safetensors?download=true)
- [πŸ“Š Metadata](https://huggingface.co/k4d3/yiff_toolkit/raw/main/ponyxl_loras/blp-v1e400.json)

Replicate [blp](https://e6ai.net/posts?tags=blp)'s unique style of AI art without employing 40 different custom nodes to alter sigmas and noise injection. I recommend you set your CFG to `6` and use `DPM++ 2M Karras` for the sampler and scheduler for a more realistic look or you can use `Euler a` for a more cartoony/dreamy generation with a low CFG of `6`.

There have been reports that if you use this LoRA with a negative weight of `-0.5` your generations will have a slight sepia tone.

```js
blp,

// Recommended:

detailed background, amazing_background, scenery porn, feral, 
```

<!-- ⚠️: Hello?! Images?! --->

---

#### butterchalk-v3e400

- [⬇️ Download](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/ponyxl_loras/butterchalk-v3e400.safetensors?download=true)
- [πŸ“Š Metadata](https://huggingface.co/k4d3/yiff_toolkit/raw/main/ponyxl_loras/butterchalk-v3e400.json)

I'm not into `young anthro` I only trained this one for you, you hentai baka! ^_^

<!-- ⚠️ --->

---

#### cecily_lin-v1e37

- [⬇️ Download](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/ponyxl_loras/cecily_lin-v1e37.safetensors?download=true)
- [πŸ“Š Metadata](https://huggingface.co/k4d3/yiff_toolkit/raw/main/ponyxl_loras/cecily_lin-v1e37.json)

I'm honestly not familiar with this artist, I just scraped their art and let sd-scripts go wild.

<!-- ⚠️ --->

---

#### chunie-v1e5

- [⬇️ Download](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/ponyxl_loras/chunie-v1e5.safetensors?download=true)
- [πŸ“Š Metadata](https://huggingface.co/k4d3/yiff_toolkit/raw/main/ponyxl_loras/chunie-v1e5.json)

Everyone loves Chunie. 😹

<!-- ⚠️ --->

---

#### cooliehigh-v1e45

- [⬇️ Download](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/ponyxl_loras/cooliehigh-v1e45.safetensors?download=true)
- [πŸ“Š Metadata](https://huggingface.co/k4d3/yiff_toolkit/raw/main/ponyxl_loras/cooliehigh-v1e45.json)

Again, I'm really uncultured when it comes to furry artists.

<!-- ⚠️ --->

---

#### by_clybius-v1e400

- [⬇️ Download](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/ponyxl_loras/by_clybius-v1e400.safetensors?download=true)
- [πŸ“Š Metadata](https://huggingface.co/k4d3/yiff_toolkit/raw/main/ponyxl_loras/by_clybius-v1e400.json)

An AI artist to bias the dataset towards detailed owls.

<div style="background-color: lightyellow; padding: 10px;">
<details>
  <summary>Click to reveal images.</summary>

[![An AI generated image.](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/static/by_clybius/00001289-05020303-512.png)](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/static/by_clybius/00001289-05020303.png) [![An AI generated image.](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/static/by_clybius/00001293-05020312-512.png)](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/static/by_clybius/00001293-05020312.png)
</details>
</div>

<!-- ⚠️ --->

---

#### dagasi-v1e134

- [⬇️ Download](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/ponyxl_loras/dagasi-v1e134.safetensors?download=true)
- [πŸ“Š Metadata](https://huggingface.co/k4d3/yiff_toolkit/raw/main/ponyxl_loras/dagasi-v1e134.json)

Even I heard about this one!

<!-- ⚠️ --->

---

#### darkgem-v1e4

- [⬇️ Download](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/ponyxl_loras/darkgem-v1e4.safetensors?download=true)
- [πŸ“Š Metadata](https://huggingface.co/k4d3/yiff_toolkit/raw/main/ponyxl_loras/darkgem-v1e4.json)

Quality digital painting style. Some people don't like it.

I recommend first an `Euler a` with `40` steps, CFG set to `11` at 1024x1024 resolution and then a hi-res pass at 1536x1536 with `DPM++ 2M Karras` at 60 steps with denoise set at 0.69 for the highest darkgem. Please only use `darkgem` if you want gems to appear in the scene or maybe your character will end up `holding a dark red gem`.

<div style="background-color: lightyellow; padding: 10px;">
<details>
  <summary>Click to reveal images.</summary>

[![An AI generated image.](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/static/darkgem/00000859-04070924e-512.png)](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/static/darkgem/00000859-04070924e.png)
</details>
</div>

<!-- ⚠️ TODO: Generate more darkgem lmao! -->

---

#### by_himari-v1e400

- [⬇️ Download](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/ponyxl_loras/by_himari-v1e400.safetensors?download=true)
- [πŸ“Š Metadata](https://huggingface.co/k4d3/yiff_toolkit/raw/main/ponyxl_loras/by_himari-v1e400.json)

A tiny dumb LoRA trained on 4 images by [@147Penguinmw](https://twitter.com/147Penguinmw). The keyword is `by himari` but you probably don't need to use it!

```js
// Positive Prompt Example
score_9, score_8_up, score_7_up, score_6_up, source_furry, rating_explicit, on back, sexy pose, full-length portrait, pussy, solo, reptile, scalie, anthro female lizard, scales, blush, blue eyes, white body, blue body, plant, blue scales, white scales, detailed background, looking at viewer, furniture, digital media \(artwork\), This digital artwork image presents a solo anthropomorphic female reptile specifically a lizard with a white body adorned with detailed blue scales.,
```

<div style="background-color: lightyellow; padding: 10px;">
<details>
  <summary>Click to reveal images.</summary>
  
[![An AI generated image.](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/static/by_himari/00000418-04190818-512.png)](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/static/by_himari/00000418-04190818.png) [![An AI generated image.](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/static/by_himari/00001078-04190837-512.png)](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/static/by_himari/00001078-04190837.png)
</details>
</div>

#### furry_sticker-v1e250

- [⬇️ Download](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/ponyxl_loras/furry_sticker-v1e250.safetensors?download=true)
- [πŸ“Š Metadata](https://huggingface.co/k4d3/yiff_toolkit/raw/main/ponyxl_loras/furry_sticker-v1e250.json)

Generate an infinite amount of furry stickers for your infinite amount of telegram accounts!

```js
// Positive prompt:

furry sticker, simple background, black background, white outline, 

// Negative prompt:

abstract background, detailed background, amazing_background, scenery porn,
```

<div style="background-color: lightyellow; padding: 10px;">
<details>
  <summary>Click to reveal images.</summary>
  
[![An AI generated image.](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/static/furry_sticker/it-wasnt-me-512.png)](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/static/furry_sticker/it-wasnt-me.png) [![An AI generated image.](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/static/furry_sticker/kade-rice-512.png)](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/static/furry_sticker/kade-rice.png) [![An AI generated image.](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/static/furry_sticker/kade-this-point-up-sticker-your-stupid-512.png)](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/static/furry_sticker/kade-this-point-up-sticker-your-stupid.png) [![An AI generated image.](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/static/furry_sticker/tibetan-unimpressede-512.png)](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/static/furry_sticker/tibetan-unimpressede.png)
</details>
</div>

---

#### goronic-v1e1

- [⬇️ Download](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/ponyxl_loras/goronic-v1e1.safetensors?download=true)
- [πŸ“Š Metadata](https://huggingface.co/k4d3/yiff_toolkit/raw/main/ponyxl_loras/goronic-v1e1.json)

<!-- ⚠️ --->

---

#### greg_rutkowski-v1e400

- [⬇️ Download](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/ponyxl_loras/greg_rutkowski-v1e400.safetensors?download=true)
- [πŸ“Š Metadata](https://huggingface.co/k4d3/yiff_toolkit/raw/main/ponyxl_loras/greg_rutkowski-v1e400.json)

<!-- ⚠️ --->

---

#### hamgas-v1e400

- [⬇️ Download](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/ponyxl_loras/hamgas-v1e400.safetensors?download=true)
- [πŸ“Š Metadata](https://huggingface.co/k4d3/yiff_toolkit/raw/main/ponyxl_loras/hamgas-v1e400.json)

<!-- ⚠️ --->

---

#### honovy-v1e4

- [⬇️ Download](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/ponyxl_loras/honovy-v1e4.safetensors?download=true)
- [πŸ“Š Metadata](https://huggingface.co/k4d3/yiff_toolkit/raw/main/ponyxl_loras/honovy-v1e4.json)

<!-- ⚠️ --->

---

#### jinxit-v1e10

- [⬇️ Download](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/ponyxl_loras/jinxit-v1e10.safetensors?download=true)
- [πŸ“Š Metadata](https://huggingface.co/k4d3/yiff_toolkit/raw/main/ponyxl_loras/jinxit-v1e10.json)

<!-- ⚠️ --->

---

#### kame_3-v1e80

- [⬇️ Download](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/ponyxl_loras/kame_3-v1e80.safetensors?download=true)
- [πŸ“Š Metadata](https://huggingface.co/k4d3/yiff_toolkit/raw/main/ponyxl_loras/kame_3-v1e80.json)

<!-- ⚠️ --->

---

#### kenket-v1e4

- [⬇️ Download](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/ponyxl_loras/kenket-v1e4.safetensors?download=true)
- [πŸ“Š Metadata](https://huggingface.co/k4d3/yiff_toolkit/raw/main/ponyxl_loras/kenket-v1e4.json)

<!-- ⚠️ --->

---

#### louart-v1e10

- [⬇️ Download](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/ponyxl_loras/louart-v1e10.safetensors?download=true)
- [πŸ“Š Metadata](https://huggingface.co/k4d3/yiff_toolkit/raw/main/ponyxl_loras/louart-v1e10.json)

<!-- ⚠️ --->

---

#### realistic-v4e400

- [⬇️ Download](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/ponyxl_loras/realistic%2Bscale_iridescence-v4e400.safetensors?download=true)
- [πŸ“Š Metadata](https://huggingface.co/k4d3/yiff_toolkit/raw/main/ponyxl_loras/realistic%2Bscale_iridescence-v4e400.json)

```js
// Positive prompt:

realistic, photo, detailed background, amazing_background, scenery porn,

// Negative prompt:

abstract background, simple background
```

My take on photorealistic furries. Highly experimental and extremely fun!
I recommend you don't try anything but a CFG of `6` and `DPM++ 2M Karras`.

You can combo this with the [RetouchPhoto LoRA](https://civitai.com/models/343602/retouchphoto-for-ponyv6) for even more research. πŸ“ˆ

<div style="background-color: lightyellow; padding: 10px;">
<details>
  <summary>Click to view images</summary>
  
  [![An AI generated image.](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/static/realistic/00001231-04070113-512.png)](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/static/realistic/00001231-04070113.png) [![An AI generated image.](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/static/realistic/00000685-04021915-512.png)](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/static/realistic/00000685-04021915.png) [![An AI generated image.](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/static/realistic/00000703-04021946-512.png)](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/static/realistic/00000703-04021946.png) [![An AI generated image.](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/static/realistic/00000706-04021959-512.png)](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/static/realistic/00000706-04021959.png) [![An AI generated image.](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/static/realistic/00000754-04030229-512.png)](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/static/realistic/00000754-04030229.png) [![An AI generated image.](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/static/realistic/00000233-03232306-512.png)](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/static/realistic/00000233-03232306.png)
</details>
</div>

---

#### skecchiart-v1e134

- [⬇️ Download](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/ponyxl_loras/skecchiart-v1e134.safetensors?download=true)
- [πŸ“Š Metadata](https://huggingface.co/k4d3/yiff_toolkit/raw/main/ponyxl_loras/skecchiart-v1e134.json)

<!-- ⚠️ --->

---

#### spectrumshift-v1e400

- [⬇️ Download](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/ponyxl_loras/spectrumshift-v1e400.safetensors?download=true)
- [πŸ“Š Metadata](https://huggingface.co/k4d3/yiff_toolkit/raw/main/ponyxl_loras/spectrumshift-v1e400.json)

<!-- ⚠️ --->

---

#### squishy-v1e10

- [⬇️ Download](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/ponyxl_loras/squishy-v1e10.safetensors?download=true)
- [πŸ“Š Metadata](https://huggingface.co/k4d3/yiff_toolkit/raw/main/ponyxl_loras/squishy-v1e10.json)

<!-- ⚠️ --->

---

#### whisperingfornothing-v1e58

- [⬇️ Download](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/ponyxl_loras/whisperingfornothing-v1e58.safetensors?download=true)
- [πŸ“Š Metadata](https://huggingface.co/k4d3/yiff_toolkit/raw/main/ponyxl_loras/whisperingfornothing-v1e58.json)

<!-- ⚠️ --->

---

#### wjs07-v1e200

- [⬇️ Download](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/ponyxl_loras/wjs07-v1e200.safetensors?download=true)
- [πŸ“Š Metadata](https://huggingface.co/k4d3/yiff_toolkit/raw/main/ponyxl_loras/wjs07-v1e200.json)

<!-- ⚠️ --->

---

#### wolfy-nail-v1e400

- [⬇️ Download](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/ponyxl_loras/wolfy-nail-v1e400.safetensors?download=true)
- [πŸ“Š Metadata](https://huggingface.co/k4d3/yiff_toolkit/raw/main/ponyxl_loras/wolfy-nail-v1e400.json)

<!-- ⚠️ --->

---

#### woolrool-v1e4

- [⬇️ Download](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/ponyxl_loras/woolrool-v1e4.safetensors?download=true)
- [πŸ“Š Metadata](https://huggingface.co/k4d3/yiff_toolkit/raw/main/ponyxl_loras/woolrool-v1e4.json)

<!-- ⚠️ --->

---

### Character LoRAs

#### arielsatyr-v1e400

- [⬇️ Download](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/ponyxl_loras/arielsatyr-v1e400.safetensors?download=true)
- [πŸ“Š Metadata](https://huggingface.co/k4d3/yiff_toolkit/raw/main/ponyxl_loras/arielsatyr-v1e400.json)

<!-- ⚠️ --->

---

#### amalia-v2e400

- [⬇️ Download](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/ponyxl_loras/amalia-v2e400.safetensors?download=true)
- [πŸ“Š Metadata](https://huggingface.co/k4d3/yiff_toolkit/raw/main/ponyxl_loras/amalia-v2e400.json)

Some loli cat girl. Enjoy yourself!

<!-- ⚠️ --->

---

#### amicus-v1e200

- [⬇️ Download](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/ponyxl_loras/amicus-v1e200.safetensors?download=true)
- [πŸ“Š Metadata](https://huggingface.co/k4d3/yiff_toolkit/raw/main/ponyxl_loras/amicus-v1e200.json)

Gay space wolf from a visual novel everyone wants me to play.

<!-- ⚠️ --->

---

#### auroth-v1e250

- [⬇️ Download](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/ponyxl_loras/auroth-v1e250.safetensors?download=true)
- [πŸ“Š Metadata](https://huggingface.co/k4d3/yiff_toolkit/raw/main/ponyxl_loras/auroth-v1e250.json)

A dragon or wyvern thing from DOTA2

<!-- ⚠️ --->

---

#### blaidd-v1e400

- [⬇️ Download](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/ponyxl_loras/blaidd-v1e400.safetensors?download=true)
- [πŸ“Š Metadata](https://huggingface.co/k4d3/yiff_toolkit/raw/main/ponyxl_loras/blaidd-v1e400.json)

**Half-wolf Blaidd!** Bestest boy of Elden Ring! He's a very good boy! Can be a naughty boy though as well, if you like..

<!-- ⚠️ --->

---

#### martlet-v1e200

- [⬇️ Download](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/ponyxl_loras/martlet-v1e200.safetensors?download=true)
- [πŸ“Š Metadata](https://huggingface.co/k4d3/yiff_toolkit/raw/main/ponyxl_loras/martlet-v1e200.json)

<!-- ⚠️ --->

---

#### ramona-v1e400

- [⬇️ Download](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/ponyxl_loras/ramona-v1e400.safetensors?download=true)
- [πŸ“Š Metadata](https://huggingface.co/k4d3/yiff_toolkit/raw/main/ponyxl_loras/ramona-v1e400.json)

<!-- ⚠️ --->

---

#### tibetan-v2e500

- [⬇️ Download](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/ponyxl_loras/tibetan-v2e500.safetensors?download=true)
- [πŸ“Š Metadata](https://huggingface.co/k4d3/yiff_toolkit/raw/main/ponyxl_loras/tibetan-v2e500.json)

<!-- ⚠️ --->

---

#### veemon-v1e400

- [⬇️ Download](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/ponyxl_loras/veemon-v1e400.safetensors?download=true)
- [πŸ“Š Metadata](https://huggingface.co/k4d3/yiff_toolkit/raw/main/ponyxl_loras/veemon-v1e400.json)

<!-- ⚠️ --->

---

#### hoodwink-v1e400

- [⬇️ Download](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/ponyxl_loras/hoodwink-v1e400.safetensors?download=true)
- [πŸ“Š Metadata](https://huggingface.co/k4d3/yiff_toolkit/raw/main/ponyxl_loras/hoodwink-v1e400.json)

<!-- ⚠️ --->

---

#### jayjay-v1e400

- [⬇️ Download](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/ponyxl_loras/jayjay-v1e400.safetensors?download=true)
- [πŸ“Š Metadata](https://huggingface.co/k4d3/yiff_toolkit/raw/main/ponyxl_loras/jayjay-v1e400.json)

<!-- ⚠️ --->

---

#### foxparks-v2e134

- [⬇️ Download](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/ponyxl_loras/foxparks-v2e134.safetensors?download=true)
- [πŸ“Š Metadata](https://huggingface.co/k4d3/yiff_toolkit/raw/main/ponyxl_loras/foxparks-v2e134.json)

<!-- ⚠️ --->

---

#### lovander-v3e10

- [⬇️ Download](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/ponyxl_loras/lovander-v3e10.safetensors?download=true)
- [πŸ“Š Metadata](https://huggingface.co/k4d3/yiff_toolkit/raw/main/ponyxl_loras/lovander-v3e10.json)

<!-- ⚠️ --->

---

#### skiltaire-v1e400

- [⬇️ Download](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/ponyxl_loras/skiltaire-v1e400.safetensors?download=true)
- [πŸ“Š Metadata](https://huggingface.co/k4d3/yiff_toolkit/raw/main/ponyxl_loras/skiltaire-v1e400.json)

<!-- ⚠️ --->

---

#### chillet-v3e10

- [⬇️ Download](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/ponyxl_loras/chillet-v3e10.safetensors?download=true)
- [πŸ“Š Metadata](https://huggingface.co/k4d3/yiff_toolkit/raw/main/ponyxl_loras/chillet-v3e10.json)

<!-- ⚠️ --->

---

#### maliketh-v1e1

- [⬇️ Download](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/ponyxl_loras/maliketh-v1e1.safetensors?download=true)
- [πŸ“Š Metadata](https://huggingface.co/k4d3/yiff_toolkit/raw/main/ponyxl_loras/maliketh-v1e1.json)

Second best boy of Elden Ring, it took me 7 tries the first time, so this is my form of payback!

```js
// Positive prompt:

male, anthro, maliketh \(elden ring\), white fur, white hair, head armor, red canine genitalia, knot,

// NLP version:

anthro male maliketh \(elden ring\) with white fur and white hair wearing head armor, He has a red canine genitalia with a knotty base and fluffy tail, He has claws and monotone fur with a monotone body,
```

<div style="background-color: lightyellow; padding: 10px;">
<details>
  <summary>Click to reveal images</summary>

[![An AI generated image.](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/static/maliketh/00000844-04070802e-512.png)](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/static/maliketh/00000844-04070802e.png) [![An AI generated image.](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/static/maliketh/00000850-04070838-512.png)](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/static/maliketh/00000850-04070838.png) [![An AI generated image.](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/static/maliketh/00000842-04070728e-512.png)](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/static/maliketh/00000842-04070728e.png)
</details>
</div>

---

#### wickerbeast-v1e500

- [⬇️ Download](https://huggingface.co/k4d3/yiff_toolkit/resolve/main/ponyxl_loras/wickerbeast-v1e500.safetensors?download=true)
- [πŸ“Š Metadata](https://huggingface.co/k4d3/yiff_toolkit/raw/main/ponyxl_loras/wickerbeast-v1e500.json)

<!-- ⚠️ --->

---

## Satisfied Customers