metadata
language:
- en
license: mit
library_name: transformers
tags:
- peft
datasets:
- HuggingFaceH4/ultrachat_200k
model-index:
- name: Maixtchup-4x7b-QLoRA-SFT-UltraChat
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 60.92
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kaitchup/Maixtchup-4x7b-QLoRA-SFT-UltraChat
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 83.23
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kaitchup/Maixtchup-4x7b-QLoRA-SFT-UltraChat
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 60.78
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kaitchup/Maixtchup-4x7b-QLoRA-SFT-UltraChat
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 53.33
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kaitchup/Maixtchup-4x7b-QLoRA-SFT-UltraChat
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 77.19
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kaitchup/Maixtchup-4x7b-QLoRA-SFT-UltraChat
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 43.21
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kaitchup/Maixtchup-4x7b-QLoRA-SFT-UltraChat
name: Open LLM Leaderboard
LoRA adapter for kaitchup/Maixtchup-4x7b briefly fine-tuned on UltraChat.
To load and use this adapter:
model_name = "kaitchup/Maixtchup-4x7b"
#Tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
compute_dtype = getattr(torch, "float16")
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=compute_dtype,
bnb_4bit_use_double_quant=True,
)
model = AutoModelForCausalLM.from_pretrained(
model_name, quantization_config=bnb_config, device_map="auto", attn_implementation="flash_attention_2",
)
model.config.use_cache = True
model = PeftModel.from_pretrained(model, "kaitchup/Maixtchup-4x7b-QLoRA-SFT-UltraChat")
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 63.11 |
AI2 Reasoning Challenge (25-Shot) | 60.92 |
HellaSwag (10-Shot) | 83.23 |
MMLU (5-Shot) | 60.78 |
TruthfulQA (0-shot) | 53.33 |
Winogrande (5-shot) | 77.19 |
GSM8k (5-shot) | 43.21 |