turkish-zeroshot-large
This model is a fine-tuned version of dbmdz/bert-base-turkish-128k-uncased on facebook/xnli tr dataset. It achieves the following results on the evaluation set:
- Loss: 0.6957
- Accuracy: 0.7622
- F1: 0.7621
- Precision: 0.7702
- Recall: 0.7622
Usage
# Use a pipeline as a high-level helper
pipe = pipeline(
"zero-shot-classification",
model="kaixkhazaki/turkish-zeroshot-large",
tokenizer="kaixkhazaki/turkish-zeroshot-large",
device=0 if torch.cuda.is_available() else -1 # Use GPU if available
)
#Enter your text and possible candidates of classification
sequence = "Bu laptopun pil ömrü ne kadar dayanıyor?"
candidate_labels = ["ürün özellikleri", "soru", "bilgi talebi", "laptop", "teknik destek"]
pipe(
sequence,
candidate_labels,
)
>>
{'sequence': 'Bu laptopun pil ömrü ne kadar dayanıyor?',
'labels': ['ürün özellikleri', 'laptop', 'soru', 'bilgi talebi', 'teknik destek'],
'scores': [0.31062474846839905, 0.2971721291542053, 0.1954265981912613, 0.13260306417942047, 0.06417346745729446]}
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 32
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 500
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|
1.0339 | 0.0326 | 200 | 1.0342 | 0.4855 | 0.4610 | 0.5453 | 0.4855 |
0.8777 | 0.0652 | 400 | 0.7819 | 0.6631 | 0.6634 | 0.6903 | 0.6631 |
0.8194 | 0.0978 | 600 | 0.7322 | 0.6888 | 0.6891 | 0.6956 | 0.6888 |
0.7745 | 0.1304 | 800 | 0.6895 | 0.7120 | 0.7129 | 0.7217 | 0.7120 |
0.7766 | 0.1630 | 1000 | 0.7042 | 0.7044 | 0.7057 | 0.7180 | 0.7044 |
0.7388 | 0.1956 | 1200 | 0.6933 | 0.7092 | 0.7097 | 0.7310 | 0.7092 |
0.7392 | 0.2282 | 1400 | 0.6812 | 0.7201 | 0.7208 | 0.7384 | 0.7201 |
0.7205 | 0.2608 | 1600 | 0.6892 | 0.7108 | 0.7092 | 0.7326 | 0.7108 |
0.7229 | 0.2934 | 1800 | 0.6762 | 0.7120 | 0.7123 | 0.7265 | 0.7120 |
0.6833 | 0.3259 | 2000 | 0.6374 | 0.7333 | 0.7338 | 0.7404 | 0.7333 |
0.7356 | 0.3585 | 2200 | 0.6803 | 0.7112 | 0.7100 | 0.7294 | 0.7112 |
0.7044 | 0.3911 | 2400 | 0.6894 | 0.7169 | 0.7168 | 0.7430 | 0.7169 |
0.701 | 0.4237 | 2600 | 0.6512 | 0.7209 | 0.7225 | 0.7431 | 0.7209 |
0.7005 | 0.4563 | 2800 | 0.6160 | 0.7442 | 0.7451 | 0.7516 | 0.7442 |
0.7028 | 0.4889 | 3000 | 0.6207 | 0.7349 | 0.7360 | 0.7444 | 0.7349 |
0.7129 | 0.5215 | 3200 | 0.6281 | 0.7341 | 0.7360 | 0.7503 | 0.7341 |
0.6812 | 0.5541 | 3400 | 0.6082 | 0.7438 | 0.7444 | 0.7495 | 0.7438 |
0.6615 | 0.5867 | 3600 | 0.6600 | 0.7293 | 0.7296 | 0.7509 | 0.7293 |
0.6851 | 0.6193 | 3800 | 0.6117 | 0.7466 | 0.7476 | 0.7556 | 0.7466 |
0.69 | 0.6519 | 4000 | 0.6284 | 0.7454 | 0.7461 | 0.7578 | 0.7454 |
0.6591 | 0.6845 | 4200 | 0.6088 | 0.7526 | 0.7536 | 0.7615 | 0.7526 |
0.6858 | 0.7171 | 4400 | 0.6241 | 0.7442 | 0.7459 | 0.7649 | 0.7442 |
0.6562 | 0.7497 | 4600 | 0.5933 | 0.7631 | 0.7638 | 0.7684 | 0.7631 |
0.6584 | 0.7823 | 4800 | 0.6152 | 0.7510 | 0.7523 | 0.7667 | 0.7510 |
0.6288 | 0.8149 | 5000 | 0.5803 | 0.7663 | 0.7670 | 0.7696 | 0.7663 |
0.6456 | 0.8475 | 5200 | 0.6443 | 0.7369 | 0.7376 | 0.7582 | 0.7369 |
0.6751 | 0.8801 | 5400 | 0.5841 | 0.7627 | 0.7639 | 0.7684 | 0.7627 |
0.6296 | 0.9126 | 5600 | 0.5990 | 0.7510 | 0.7528 | 0.7655 | 0.7510 |
0.6536 | 0.9452 | 5800 | 0.6069 | 0.7454 | 0.7471 | 0.7736 | 0.7454 |
0.6541 | 0.9778 | 6000 | 0.5822 | 0.7598 | 0.7612 | 0.7694 | 0.7598 |
0.5352 | 1.0104 | 6200 | 0.6166 | 0.7590 | 0.7589 | 0.7667 | 0.7590 |
0.513 | 1.0430 | 6400 | 0.5883 | 0.7667 | 0.7669 | 0.7719 | 0.7667 |
0.5426 | 1.0756 | 6600 | 0.5802 | 0.7631 | 0.7641 | 0.7709 | 0.7631 |
0.5609 | 1.1082 | 6800 | 0.5901 | 0.7558 | 0.7559 | 0.7602 | 0.7558 |
0.5626 | 1.1408 | 7000 | 0.5967 | 0.7538 | 0.7556 | 0.7727 | 0.7538 |
0.5404 | 1.1734 | 7200 | 0.5973 | 0.7530 | 0.7549 | 0.7668 | 0.7530 |
0.547 | 1.2060 | 7400 | 0.6014 | 0.7538 | 0.7539 | 0.7652 | 0.7538 |
0.5364 | 1.2386 | 7600 | 0.5895 | 0.7647 | 0.7656 | 0.7770 | 0.7647 |
0.5504 | 1.2712 | 7800 | 0.6127 | 0.7494 | 0.7483 | 0.7621 | 0.7494 |
0.5322 | 1.3038 | 8000 | 0.5927 | 0.7639 | 0.7646 | 0.7713 | 0.7639 |
0.5211 | 1.3364 | 8200 | 0.6247 | 0.7494 | 0.7510 | 0.7689 | 0.7494 |
0.561 | 1.3690 | 8400 | 0.5600 | 0.7731 | 0.7739 | 0.7775 | 0.7731 |
0.559 | 1.4016 | 8600 | 0.6107 | 0.7506 | 0.7514 | 0.7647 | 0.7506 |
0.5492 | 1.4342 | 8800 | 0.5770 | 0.7651 | 0.7661 | 0.7721 | 0.7651 |
0.5399 | 1.4668 | 9000 | 0.5827 | 0.7614 | 0.7623 | 0.7697 | 0.7614 |
0.5125 | 1.4993 | 9200 | 0.6080 | 0.7606 | 0.7620 | 0.7732 | 0.7606 |
0.5407 | 1.5319 | 9400 | 0.5651 | 0.7679 | 0.7684 | 0.7707 | 0.7679 |
0.5429 | 1.5645 | 9600 | 0.5778 | 0.7635 | 0.7645 | 0.7695 | 0.7635 |
0.538 | 1.5971 | 9800 | 0.5937 | 0.7526 | 0.7542 | 0.7660 | 0.7526 |
0.5533 | 1.6297 | 10000 | 0.5955 | 0.7715 | 0.7724 | 0.7765 | 0.7715 |
0.5309 | 1.6623 | 10200 | 0.6251 | 0.7538 | 0.7546 | 0.7660 | 0.7538 |
0.5301 | 1.6949 | 10400 | 0.5991 | 0.7627 | 0.7639 | 0.7777 | 0.7627 |
0.5076 | 1.7275 | 10600 | 0.6074 | 0.7578 | 0.7587 | 0.7720 | 0.7578 |
0.5571 | 1.7601 | 10800 | 0.6309 | 0.7534 | 0.7542 | 0.7708 | 0.7534 |
0.5352 | 1.7927 | 11000 | 0.5786 | 0.7739 | 0.7742 | 0.7826 | 0.7739 |
0.5387 | 1.8253 | 11200 | 0.6231 | 0.7526 | 0.7516 | 0.7670 | 0.7526 |
0.5389 | 1.8579 | 11400 | 0.5686 | 0.7671 | 0.7680 | 0.7760 | 0.7671 |
0.5454 | 1.8905 | 11600 | 0.6054 | 0.7546 | 0.7562 | 0.7751 | 0.7546 |
0.5326 | 1.9231 | 11800 | 0.5860 | 0.7715 | 0.7721 | 0.7787 | 0.7715 |
0.5428 | 1.9557 | 12000 | 0.5853 | 0.7655 | 0.7664 | 0.7782 | 0.7655 |
0.5454 | 1.9883 | 12200 | 0.5810 | 0.7651 | 0.7654 | 0.7689 | 0.7651 |
0.3759 | 2.0209 | 12400 | 0.6863 | 0.7679 | 0.7685 | 0.7737 | 0.7679 |
0.3644 | 2.0535 | 12600 | 0.7031 | 0.7586 | 0.7595 | 0.7713 | 0.7586 |
0.3615 | 2.0860 | 12800 | 0.7177 | 0.7582 | 0.7594 | 0.7659 | 0.7582 |
0.383 | 2.1186 | 13000 | 0.6836 | 0.7586 | 0.7594 | 0.7720 | 0.7586 |
0.3818 | 2.1512 | 13200 | 0.6996 | 0.7683 | 0.7693 | 0.7803 | 0.7683 |
0.3917 | 2.1838 | 13400 | 0.6490 | 0.7679 | 0.7693 | 0.7751 | 0.7679 |
0.3527 | 2.2164 | 13600 | 0.7409 | 0.7570 | 0.7580 | 0.7717 | 0.7570 |
0.3785 | 2.2490 | 13800 | 0.6836 | 0.7570 | 0.7571 | 0.7700 | 0.7570 |
0.3732 | 2.2816 | 14000 | 0.6396 | 0.7723 | 0.7732 | 0.7782 | 0.7723 |
0.3616 | 2.3142 | 14200 | 0.6664 | 0.7651 | 0.7663 | 0.7758 | 0.7651 |
0.3705 | 2.3468 | 14400 | 0.6688 | 0.7570 | 0.7582 | 0.7691 | 0.7570 |
0.3668 | 2.3794 | 14600 | 0.7041 | 0.7627 | 0.7631 | 0.7722 | 0.7627 |
0.3697 | 2.4120 | 14800 | 0.6771 | 0.7554 | 0.7558 | 0.7666 | 0.7554 |
0.3767 | 2.4446 | 15000 | 0.6950 | 0.7606 | 0.7613 | 0.7733 | 0.7606 |
0.3999 | 2.4772 | 15200 | 0.6775 | 0.7602 | 0.7608 | 0.7685 | 0.7602 |
0.3758 | 2.5098 | 15400 | 0.6654 | 0.7618 | 0.7622 | 0.7679 | 0.7618 |
0.3851 | 2.5424 | 15600 | 0.7070 | 0.7558 | 0.7568 | 0.7687 | 0.7558 |
0.3716 | 2.5750 | 15800 | 0.7472 | 0.7546 | 0.7555 | 0.7704 | 0.7546 |
0.3633 | 2.6076 | 16000 | 0.6957 | 0.7622 | 0.7621 | 0.7702 | 0.7622 |
Framework versions
- Transformers 4.48.0.dev0
- Pytorch 2.4.1+cu121
- Datasets 3.1.0
- Tokenizers 0.21.0
- Downloads last month
- 14
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for kaixkhazaki/turkish-zeroshot-large
Base model
dbmdz/bert-base-turkish-128k-uncased