kanishka's picture
End of training
e4fc055 verified
metadata
library_name: transformers
tags:
  - generated_from_trainer
datasets:
  - kanishka/babylm2-rewritten-clean-spacy
metrics:
  - accuracy
model-index:
  - name: opt-babylm2-rewritten-clean-spacy-earlystop-bpe_seed-1024_1e-3
    results:
      - task:
          name: Causal Language Modeling
          type: text-generation
        dataset:
          name: kanishka/babylm2-rewritten-clean-spacy
          type: kanishka/babylm2-rewritten-clean-spacy
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.4786608631587111

opt-babylm2-rewritten-clean-spacy-earlystop-bpe_seed-1024_1e-3

This model was trained from scratch on the kanishka/babylm2-rewritten-clean-spacy dataset. It achieves the following results on the evaluation set:

  • Loss: 2.6845
  • Accuracy: 0.4787

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 64
  • seed: 1024
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 256
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 32000
  • num_epochs: 20.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
4.093 1.0 2256 3.8133 0.3607
3.4493 2.0 4512 3.3059 0.4091
3.132 3.0 6768 3.0989 0.4295
2.9232 4.0 9024 2.9917 0.4401
2.8445 5.0 11280 2.9270 0.4466
2.7872 6.0 13536 2.8861 0.4510
2.7438 7.0 15792 2.8637 0.4541
2.7139 8.0 18048 2.8414 0.4565
2.6887 9.0 20304 2.8274 0.4580
2.6686 10.0 22560 2.8194 0.4590
2.65 11.0 24816 2.8066 0.4605
2.6481 12.0 27072 2.8002 0.4611
2.6382 13.0 29328 2.7956 0.4618
2.6285 14.0 31584 2.7968 0.4619
2.6116 15.0 33840 2.7692 0.4650
2.5677 16.0 36096 2.7446 0.4684
2.5197 17.0 38352 2.7191 0.4717
2.462 18.0 40608 2.7010 0.4747
2.3973 19.0 42864 2.6860 0.4773
2.324 19.9915 45100 2.6845 0.4787

Framework versions

  • Transformers 4.48.0
  • Pytorch 2.5.1
  • Datasets 3.2.0
  • Tokenizers 0.21.0