opt-babylm2-rewritten-clean-spacy_random-removal-num-adj-earlystop-bpe_seed-1024_1e-3

This model was trained from scratch on the kanishka/babylm2-rewritten-clean-spacy_random-removal-num-adj dataset. It achieves the following results on the evaluation set:

  • Loss: 2.6847
  • Accuracy: 0.4786

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 64
  • seed: 1024
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 256
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 32000
  • num_epochs: 20.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
4.0912 0.9997 2240 3.8117 0.3613
3.4432 1.9997 4480 3.2982 0.4102
3.1317 2.9997 6720 3.0935 0.4303
2.9687 3.9997 8960 2.9876 0.4411
2.8476 4.9997 11200 2.9233 0.4474
2.7908 5.9997 13440 2.8864 0.4513
2.7475 6.9997 15680 2.8587 0.4544
2.7106 7.9997 17920 2.8397 0.4567
2.6915 8.9997 20160 2.8251 0.4583
2.6701 9.9997 22400 2.8133 0.4597
2.6549 10.9997 24640 2.8065 0.4606
2.6374 11.9997 26880 2.7963 0.4614
2.6417 12.9997 29120 2.7917 0.4621
2.6321 13.9997 31360 2.7886 0.4626
2.6147 14.9997 33600 2.7674 0.4653
2.571 15.9997 35840 2.7426 0.4684
2.5232 16.9997 38080 2.7212 0.4715
2.4666 17.9997 40320 2.7036 0.4742
2.4024 18.9997 42560 2.6877 0.4770
2.3301 19.9997 44800 2.6847 0.4786

Framework versions

  • Transformers 4.48.0
  • Pytorch 2.5.1
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
0
Safetensors
Model size
98.2M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train kanishka/opt-babylm2-rewritten-clean-spacy_random-removal-num-adj-earlystop-bpe_seed-1024_1e-3

Evaluation results

  • Accuracy on kanishka/babylm2-rewritten-clean-spacy_random-removal-num-adj
    self-reported
    0.479