metadata
library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
metrics:
- accuracy
widget:
- text: >-
fuel_network Fuel The worlds fastest modular execution layer Sway
Language
- text: >-
enjin Enjin Enjin Blockchain allows seamless no code integration of NFTs
in video games and other platforms with NFT functions at the protocol
level
- text: >-
bobbyclee Bobby Lee Ballet Worlds EASIEST Cold Storage Founder CEO of
was Board Member Cofounder BTCChina BTCC Author of The Promise of
Bitcoin available on
- text: 'tradermayne Mayne '
- text: >-
novogratz Mike Novogratz CEO GLXY CN Early Investormushroom TheBailProject
Disclaimer
pipeline_tag: text-classification
inference: true
base_model: BAAI/bge-small-en-v1.5
model-index:
- name: SetFit with BAAI/bge-small-en-v1.5
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.99
name: Accuracy
SetFit with BAAI/bge-small-en-v1.5
This is a SetFit model that can be used for Text Classification. This SetFit model uses BAAI/bge-small-en-v1.5 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: BAAI/bge-small-en-v1.5
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 2 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
ORGANIZATIONAL |
|
INDIVIDUAL |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.99 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("kasparas12/is_organizational_model")
# Run inference
preds = model("tradermayne Mayne ")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 3 | 15.7338 | 35 |
Label | Training Sample Count |
---|---|
INDIVIDUAL | 423 |
ORGANIZATIONAL | 377 |
Training Hyperparameters
- batch_size: (32, 32)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0016 | 1 | 0.2511 | - |
0.0789 | 50 | 0.2505 | - |
0.1577 | 100 | 0.2225 | - |
0.2366 | 150 | 0.2103 | - |
0.3155 | 200 | 0.1383 | - |
0.3943 | 250 | 0.0329 | - |
0.4732 | 300 | 0.0098 | - |
0.5521 | 350 | 0.0034 | - |
0.6309 | 400 | 0.0019 | - |
0.7098 | 450 | 0.0015 | - |
0.7886 | 500 | 0.0014 | - |
0.8675 | 550 | 0.0012 | - |
0.0001 | 1 | 0.2524 | - |
0.0050 | 50 | 0.2115 | - |
0.0099 | 100 | 0.193 | - |
0.0001 | 1 | 0.2424 | - |
0.0050 | 50 | 0.2038 | - |
0.0099 | 100 | 0.1782 | - |
0.0001 | 1 | 0.2208 | - |
0.0050 | 50 | 0.1931 | - |
0.0099 | 100 | 0.1629 | - |
0.0149 | 150 | 0.2716 | - |
0.0199 | 200 | 0.18 | - |
0.0249 | 250 | 0.2504 | - |
0.0298 | 300 | 0.1936 | - |
0.0348 | 350 | 0.1764 | - |
0.0398 | 400 | 0.1817 | - |
0.0447 | 450 | 0.0624 | - |
0.0497 | 500 | 0.1183 | - |
0.0547 | 550 | 0.0793 | - |
0.0596 | 600 | 0.0281 | - |
0.0646 | 650 | 0.0876 | - |
0.0696 | 700 | 0.1701 | - |
0.0746 | 750 | 0.0468 | - |
0.0795 | 800 | 0.0525 | - |
0.0845 | 850 | 0.0783 | - |
0.0895 | 900 | 0.0342 | - |
0.0944 | 950 | 0.0158 | - |
0.0994 | 1000 | 0.0286 | - |
0.1044 | 1050 | 0.0016 | - |
0.1094 | 1100 | 0.0014 | - |
0.1143 | 1150 | 0.0298 | - |
0.1193 | 1200 | 0.018 | - |
0.1243 | 1250 | 0.0299 | - |
0.1292 | 1300 | 0.0019 | - |
0.1342 | 1350 | 0.0253 | - |
0.1392 | 1400 | 0.0009 | - |
0.1441 | 1450 | 0.0009 | - |
0.1491 | 1500 | 0.0011 | - |
0.1541 | 1550 | 0.0006 | - |
0.1591 | 1600 | 0.0006 | - |
0.1640 | 1650 | 0.0008 | - |
0.1690 | 1700 | 0.0005 | - |
0.1740 | 1750 | 0.0007 | - |
0.1789 | 1800 | 0.0006 | - |
0.1839 | 1850 | 0.0006 | - |
0.1889 | 1900 | 0.0006 | - |
0.1939 | 1950 | 0.0012 | - |
0.1988 | 2000 | 0.0004 | - |
0.2038 | 2050 | 0.0006 | - |
0.2088 | 2100 | 0.0005 | - |
0.2137 | 2150 | 0.0005 | - |
0.2187 | 2200 | 0.0005 | - |
0.2237 | 2250 | 0.0004 | - |
0.2287 | 2300 | 0.0005 | - |
0.2336 | 2350 | 0.0004 | - |
0.2386 | 2400 | 0.0004 | - |
0.2436 | 2450 | 0.0003 | - |
0.2485 | 2500 | 0.0004 | - |
0.2535 | 2550 | 0.0004 | - |
0.2585 | 2600 | 0.0004 | - |
0.2634 | 2650 | 0.0004 | - |
0.2684 | 2700 | 0.0004 | - |
0.2734 | 2750 | 0.0004 | - |
0.2784 | 2800 | 0.0056 | - |
0.2833 | 2850 | 0.0004 | - |
0.2883 | 2900 | 0.0003 | - |
0.2933 | 2950 | 0.0003 | - |
0.2982 | 3000 | 0.0004 | - |
0.3032 | 3050 | 0.0003 | - |
0.3082 | 3100 | 0.0003 | - |
0.3132 | 3150 | 0.0003 | - |
0.3181 | 3200 | 0.0003 | - |
0.3231 | 3250 | 0.0004 | - |
0.3281 | 3300 | 0.0003 | - |
0.3330 | 3350 | 0.0003 | - |
0.3380 | 3400 | 0.0003 | - |
0.3430 | 3450 | 0.0003 | - |
0.3479 | 3500 | 0.0003 | - |
0.3529 | 3550 | 0.0003 | - |
0.3579 | 3600 | 0.0003 | - |
0.3629 | 3650 | 0.0003 | - |
0.3678 | 3700 | 0.0003 | - |
0.3728 | 3750 | 0.0004 | - |
0.3778 | 3800 | 0.0004 | - |
0.3827 | 3850 | 0.0003 | - |
0.3877 | 3900 | 0.0003 | - |
0.3927 | 3950 | 0.0003 | - |
0.3977 | 4000 | 0.0003 | - |
0.4026 | 4050 | 0.0003 | - |
0.4076 | 4100 | 0.0003 | - |
0.4126 | 4150 | 0.0003 | - |
0.4175 | 4200 | 0.0003 | - |
0.4225 | 4250 | 0.0003 | - |
0.4275 | 4300 | 0.0003 | - |
0.4324 | 4350 | 0.0003 | - |
0.4374 | 4400 | 0.0002 | - |
0.4424 | 4450 | 0.0003 | - |
0.4474 | 4500 | 0.0003 | - |
0.4523 | 4550 | 0.0003 | - |
0.4573 | 4600 | 0.0003 | - |
0.4623 | 4650 | 0.0003 | - |
0.4672 | 4700 | 0.0002 | - |
0.4722 | 4750 | 0.0002 | - |
0.4772 | 4800 | 0.0003 | - |
0.4822 | 4850 | 0.0002 | - |
0.4871 | 4900 | 0.0002 | - |
0.4921 | 4950 | 0.0002 | - |
0.4971 | 5000 | 0.0003 | - |
0.5020 | 5050 | 0.0003 | - |
0.5070 | 5100 | 0.0002 | - |
0.5120 | 5150 | 0.0003 | - |
0.5169 | 5200 | 0.0002 | - |
0.5219 | 5250 | 0.0002 | - |
0.5269 | 5300 | 0.0002 | - |
0.5319 | 5350 | 0.0002 | - |
0.5368 | 5400 | 0.0003 | - |
0.5418 | 5450 | 0.0002 | - |
0.5468 | 5500 | 0.0002 | - |
0.5517 | 5550 | 0.0002 | - |
0.5567 | 5600 | 0.0002 | - |
0.5617 | 5650 | 0.0002 | - |
0.5667 | 5700 | 0.0002 | - |
0.5716 | 5750 | 0.0002 | - |
0.5766 | 5800 | 0.0002 | - |
0.5816 | 5850 | 0.0002 | - |
0.5865 | 5900 | 0.0002 | - |
0.5915 | 5950 | 0.0002 | - |
0.5965 | 6000 | 0.0002 | - |
0.6015 | 6050 | 0.0002 | - |
0.6064 | 6100 | 0.0002 | - |
0.6114 | 6150 | 0.0002 | - |
0.6164 | 6200 | 0.0002 | - |
0.6213 | 6250 | 0.0002 | - |
0.6263 | 6300 | 0.0002 | - |
0.6313 | 6350 | 0.0002 | - |
0.6362 | 6400 | 0.0002 | - |
0.6412 | 6450 | 0.0002 | - |
0.6462 | 6500 | 0.0002 | - |
0.6512 | 6550 | 0.0002 | - |
0.6561 | 6600 | 0.0002 | - |
0.6611 | 6650 | 0.0002 | - |
0.6661 | 6700 | 0.0002 | - |
0.6710 | 6750 | 0.0002 | - |
0.6760 | 6800 | 0.0002 | - |
0.6810 | 6850 | 0.0002 | - |
0.6860 | 6900 | 0.0002 | - |
0.6909 | 6950 | 0.0002 | - |
0.6959 | 7000 | 0.0002 | - |
0.7009 | 7050 | 0.0002 | - |
0.7058 | 7100 | 0.0002 | - |
0.7108 | 7150 | 0.0002 | - |
0.7158 | 7200 | 0.0002 | - |
0.7207 | 7250 | 0.0002 | - |
0.7257 | 7300 | 0.0002 | - |
0.7307 | 7350 | 0.0002 | - |
0.7357 | 7400 | 0.0002 | - |
0.7406 | 7450 | 0.0002 | - |
0.7456 | 7500 | 0.0002 | - |
0.7506 | 7550 | 0.0002 | - |
0.7555 | 7600 | 0.0002 | - |
0.7605 | 7650 | 0.0002 | - |
0.7655 | 7700 | 0.0248 | - |
0.7705 | 7750 | 0.0002 | - |
0.7754 | 7800 | 0.0002 | - |
0.7804 | 7850 | 0.0002 | - |
0.7854 | 7900 | 0.0002 | - |
0.7903 | 7950 | 0.0002 | - |
0.7953 | 8000 | 0.0002 | - |
0.8003 | 8050 | 0.0002 | - |
0.8052 | 8100 | 0.0002 | - |
0.8102 | 8150 | 0.0002 | - |
0.8152 | 8200 | 0.0002 | - |
0.8202 | 8250 | 0.0002 | - |
0.8251 | 8300 | 0.0002 | - |
0.8301 | 8350 | 0.0002 | - |
0.8351 | 8400 | 0.0002 | - |
0.8400 | 8450 | 0.0001 | - |
0.8450 | 8500 | 0.0002 | - |
0.8500 | 8550 | 0.0002 | - |
0.8550 | 8600 | 0.0001 | - |
0.8599 | 8650 | 0.0002 | - |
0.8649 | 8700 | 0.0002 | - |
0.8699 | 8750 | 0.0002 | - |
0.8748 | 8800 | 0.0002 | - |
0.8798 | 8850 | 0.0002 | - |
0.8848 | 8900 | 0.0002 | - |
0.8898 | 8950 | 0.0003 | - |
0.8947 | 9000 | 0.0002 | - |
0.8997 | 9050 | 0.0001 | - |
0.9047 | 9100 | 0.0002 | - |
0.9096 | 9150 | 0.0002 | - |
0.9146 | 9200 | 0.0002 | - |
0.9196 | 9250 | 0.0002 | - |
0.9245 | 9300 | 0.0002 | - |
0.9295 | 9350 | 0.0002 | - |
0.9345 | 9400 | 0.0002 | - |
0.9395 | 9450 | 0.0002 | - |
0.9444 | 9500 | 0.0002 | - |
0.9494 | 9550 | 0.0001 | - |
0.9544 | 9600 | 0.0001 | - |
0.9593 | 9650 | 0.0002 | - |
0.9643 | 9700 | 0.0002 | - |
0.9693 | 9750 | 0.0002 | - |
0.9743 | 9800 | 0.0001 | - |
0.9792 | 9850 | 0.0002 | - |
0.9842 | 9900 | 0.0002 | - |
0.9892 | 9950 | 0.0002 | - |
0.9941 | 10000 | 0.0002 | - |
0.9991 | 10050 | 0.0002 | - |
Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 2.3.1
- Transformers: 4.35.2
- PyTorch: 2.1.0+cu121
- Datasets: 2.17.0
- Tokenizers: 0.15.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}