bert-dair-ai-emotion-testing

This model is a fine-tuned version of bert-base-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1413
  • F1: 0.8670

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss F1
1.4777 1.0 48 1.1115 0.6293
1.0781 2.0 96 0.7560 0.6536
0.7411 3.0 144 0.6211 0.7324
0.3429 4.0 192 0.4169 0.7486
0.4494 5.0 240 0.2302 0.7559
0.176 6.0 288 0.1959 0.8222
0.1838 7.0 336 0.1578 0.8647
0.1846 8.0 384 0.1451 0.8304
0.1379 9.0 432 0.1554 0.8647
0.0895 10.0 480 0.1418 0.8328
0.0151 11.0 528 0.1468 0.8304
0.0625 12.0 576 0.1630 0.8304
0.0397 13.0 624 0.1372 0.8304
0.0177 14.0 672 0.1359 0.8304
0.0062 15.0 720 0.1386 0.8328
0.0244 16.0 768 0.1298 0.8351
0.01 17.0 816 0.1369 0.8351
0.0094 18.0 864 0.1418 0.8670
0.0329 19.0 912 0.1400 0.8670
0.0791 20.0 960 0.1413 0.8670

Framework versions

  • PEFT 0.13.2
  • Transformers 4.48.0
  • Pytorch 2.4.1+cu124
  • Datasets 3.0.1
  • Tokenizers 0.21.0
Downloads last month
37
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for katsuchi/bert-dair-ai-emotion-testing

Adapter
(38)
this model