bert-dair-ai-emotion-testing
This model is a fine-tuned version of bert-base-cased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1413
- F1: 0.8670
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | F1 |
---|---|---|---|---|
1.4777 | 1.0 | 48 | 1.1115 | 0.6293 |
1.0781 | 2.0 | 96 | 0.7560 | 0.6536 |
0.7411 | 3.0 | 144 | 0.6211 | 0.7324 |
0.3429 | 4.0 | 192 | 0.4169 | 0.7486 |
0.4494 | 5.0 | 240 | 0.2302 | 0.7559 |
0.176 | 6.0 | 288 | 0.1959 | 0.8222 |
0.1838 | 7.0 | 336 | 0.1578 | 0.8647 |
0.1846 | 8.0 | 384 | 0.1451 | 0.8304 |
0.1379 | 9.0 | 432 | 0.1554 | 0.8647 |
0.0895 | 10.0 | 480 | 0.1418 | 0.8328 |
0.0151 | 11.0 | 528 | 0.1468 | 0.8304 |
0.0625 | 12.0 | 576 | 0.1630 | 0.8304 |
0.0397 | 13.0 | 624 | 0.1372 | 0.8304 |
0.0177 | 14.0 | 672 | 0.1359 | 0.8304 |
0.0062 | 15.0 | 720 | 0.1386 | 0.8328 |
0.0244 | 16.0 | 768 | 0.1298 | 0.8351 |
0.01 | 17.0 | 816 | 0.1369 | 0.8351 |
0.0094 | 18.0 | 864 | 0.1418 | 0.8670 |
0.0329 | 19.0 | 912 | 0.1400 | 0.8670 |
0.0791 | 20.0 | 960 | 0.1413 | 0.8670 |
Framework versions
- PEFT 0.13.2
- Transformers 4.48.0
- Pytorch 2.4.1+cu124
- Datasets 3.0.1
- Tokenizers 0.21.0
- Downloads last month
- 37
Model tree for katsuchi/bert-dair-ai-emotion-testing
Base model
google-bert/bert-base-cased