|
--- |
|
base_model: sentence-transformers/paraphrase-mpnet-base-v2 |
|
library_name: setfit |
|
metrics: |
|
- accuracy |
|
pipeline_tag: text-classification |
|
tags: |
|
- setfit |
|
- sentence-transformers |
|
- text-classification |
|
- generated_from_setfit_trainer |
|
widget: |
|
- text: one piece |
|
- text: tube |
|
- text: heavy weight |
|
- text: track |
|
- text: unitard |
|
inference: true |
|
model-index: |
|
- name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2 |
|
results: |
|
- task: |
|
type: text-classification |
|
name: Text Classification |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 0.5493273542600897 |
|
name: Accuracy |
|
--- |
|
|
|
# SetFit with sentence-transformers/paraphrase-mpnet-base-v2 |
|
|
|
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. |
|
|
|
The model has been trained using an efficient few-shot learning technique that involves: |
|
|
|
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. |
|
2. Training a classification head with features from the fine-tuned Sentence Transformer. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** SetFit |
|
- **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) |
|
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Number of Classes:** 119 classes |
|
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) |
|
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) |
|
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) |
|
|
|
### Model Labels |
|
| Label | Examples | |
|
|:------|:---------------------------------------------------------------------------------------------------| |
|
| 79 | <ul><li>'peony middle notes'</li><li>'lemon middle notes'</li><li>'coconut middle notes'</li></ul> | |
|
| 86 | <ul><li>'no print/no pattern'</li><li>'two tone'</li><li>'diagonal stripe'</li></ul> | |
|
| 37 | <ul><li>'eel skin leather'</li><li>'metal'</li><li>'raffia'</li></ul> | |
|
| 82 | <ul><li>'collarless'</li><li>'peaked lapel'</li><li>'front keyhole'</li></ul> | |
|
| 95 | <ul><li>'standard toe'</li><li>'wide toe'</li><li>'extra wide toe'</li></ul> | |
|
| 83 | <ul><li>'indoor'</li><li>'hike'</li><li>'beach'</li></ul> | |
|
| 107 | <ul><li>'surplice'</li><li>'messenger bag'</li><li>'camera bag'</li></ul> | |
|
| 19 | <ul><li>'mary jane'</li><li>'zip around wallet'</li><li>'tongue buckle'</li></ul> | |
|
| 102 | <ul><li>'slits at knee'</li><li>'slits above hips'</li><li>'front slit at hem'</li></ul> | |
|
| 35 | <ul><li>'tie'</li><li>'gem embellishment'</li><li>'caged'</li></ul> | |
|
| 18 | <ul><li>'rolo chain'</li><li>'cord bracelet'</li><li>'figaro'</li></ul> | |
|
| 65 | <ul><li>'wheat protein'</li><li>'rosemary ingredient'</li><li>'pea protein'</li></ul> | |
|
| 68 | <ul><li>'bath towel'</li><li>'art print'</li><li>'reusable bottle'</li></ul> | |
|
| 40 | <ul><li>'polyfill'</li><li>'silk fill'</li><li>'feather fill'</li></ul> | |
|
| 50 | <ul><li>'palm grip'</li><li>'carpenter hook'</li><li>'storm flap'</li></ul> | |
|
| 113 | <ul><li>'wide waistband'</li><li>'elastic inset'</li><li>'belt loops'</li></ul> | |
|
| 75 | <ul><li>'glass'</li><li>'acrylic'</li><li>'opal'</li></ul> | |
|
| 11 | <ul><li>'foam cups'</li><li>'wire'</li><li>'molded cups'</li></ul> | |
|
| 38 | <ul><li>'dual layer fabric'</li><li>'2 way stretch'</li><li>'4 way stretch'</li></ul> | |
|
| 63 | <ul><li>'light support'</li><li>'medium supprt'</li><li>'high support'</li></ul> | |
|
| 44 | <ul><li>'face'</li><li>'hand'</li><li>'neck/dècolletage'</li></ul> | |
|
| 115 | <ul><li>'soy wax'</li><li>'paraffin wax'</li></ul> | |
|
| 42 | <ul><li>'regular'</li><li>'tailored'</li><li>'fitted'</li></ul> | |
|
| 97 | <ul><li>'king'</li><li>'euro'</li><li>'standard'</li></ul> | |
|
| 70 | <ul><li>'wrist length'</li><li>'above thigh'</li><li>'below bust'</li></ul> | |
|
| 34 | <ul><li>'feminine'</li><li>'religious'</li><li>'boho'</li></ul> | |
|
| 10 | <ul><li>'slim'</li><li>'regular'</li></ul> | |
|
| 15 | <ul><li>'6-10 oz'</li><li>'11-20 oz'</li></ul> | |
|
| 77 | <ul><li>'rose gold metal'</li><li>'gold plated'</li><li>'alloy'</li></ul> | |
|
| 43 | <ul><li>'contrast inner lining'</li><li>'simple seaming'</li><li>'princess seams'</li></ul> | |
|
| 7 | <ul><li>'neroli base notes'</li><li>'amber base notes'</li><li>'musk base notes'</li></ul> | |
|
| 17 | <ul><li>'spot clean'</li><li>'dry clean'</li><li>'microwave safe'</li></ul> | |
|
| 8 | <ul><li>'nourishing'</li><li>'firming'</li><li>'soothing/healing'</li></ul> | |
|
| 103 | <ul><li>'lugged soles'</li><li>'non marking soles'</li></ul> | |
|
| 26 | <ul><li>'wall control'</li><li>'switch control'</li></ul> | |
|
| 99 | <ul><li>'fitted sleeves'</li><li>'fitted sleeve'</li><li>'structured sleeves'</li></ul> | |
|
| 33 | <ul><li>'rim'</li><li>'feet'</li><li>'5 panel construction'</li></ul> | |
|
| 64 | <ul><li>'mineral oil free'</li><li>'propylene glycol free'</li><li>'paraffin free'</li></ul> | |
|
| 96 | <ul><li>'double strap'</li><li>'spaghetti straps'</li><li>'thin straps'</li></ul> | |
|
| 1 | <ul><li>'shoulder back'</li><li>'full coverage'</li><li>'low back'</li></ul> | |
|
| 62 | <ul><li>'rustic'</li><li>'coastal'</li><li>'scandinavian'</li></ul> | |
|
| 39 | <ul><li>'metallic'</li><li>'swiss dot'</li><li>'base layer'</li></ul> | |
|
| 60 | <ul><li>'halloween'</li><li>'christmas holiday'</li></ul> | |
|
| 92 | <ul><li>'seamless'</li><li>'mid rise waist seam'</li><li>'flat seam'</li></ul> | |
|
| 114 | <ul><li>'ultra high rise'</li><li>'mid rise'</li><li>'high waisted'</li></ul> | |
|
| 105 | <ul><li>'top handle'</li><li>'detachable straps'</li><li>'chain strap'</li></ul> | |
|
| 90 | <ul><li>'floral'</li><li>'psychedelic print'</li><li>'paisley'</li></ul> | |
|
| 91 | <ul><li>'night'</li><li>'day'</li></ul> | |
|
| 45 | <ul><li>'serum formulation'</li><li>'cream/creme'</li><li>'solid'</li></ul> | |
|
| 59 | <ul><li>'strong hold'</li><li>'flexible hold'</li></ul> | |
|
| 46 | <ul><li>'leather'</li><li>'fresh aquatic'</li><li>'green aromatic'</li></ul> | |
|
| 21 | <ul><li>'matte'</li><li>'metallic'</li><li>'olive'</li></ul> | |
|
| 69 | <ul><li>'cinnamon key notes'</li><li>'violet key notes'</li><li>'pepper key notes'</li></ul> | |
|
| 101 | <ul><li>'dropped shoulder'</li><li>'puff shoulder'</li><li>'flutter sleeve'</li></ul> | |
|
| 61 | <ul><li>'summer'</li><li>'everyday'</li><li>'indoor'</li></ul> | |
|
| 104 | <ul><li>'wedding guest'</li><li>'bridal'</li><li>'halloween'</li></ul> | |
|
| 32 | <ul><li>'indigo wash'</li><li>'acid wash'</li><li>'stonewash'</li></ul> | |
|
| 51 | <ul><li>'still life graphic'</li><li>'sports graphic'</li><li>'star wars'</li></ul> | |
|
| 48 | <ul><li>'beige'</li><li>'black'</li><li>'rose gold frame'</li></ul> | |
|
| 87 | <ul><li>'medium pile'</li><li>'low pile'</li></ul> | |
|
| 22 | <ul><li>'bright'</li><li>'pastel'</li><li>'light'</li></ul> | |
|
| 41 | <ul><li>'matte finish'</li><li>'shiny finish'</li></ul> | |
|
| 93 | <ul><li>'no buckle'</li><li>'geometric shape'</li><li>'straight silhouette'</li></ul> | |
|
| 71 | <ul><li>'polarized'</li><li>'color tinted'</li><li>'mirrored'</li></ul> | |
|
| 2 | <ul><li>'split back'</li><li>'racer back'</li><li>'open back'</li></ul> | |
|
| 89 | <ul><li>'round stitch pocket'</li><li>'seam pocket'</li><li>'kangaroo pocket'</li></ul> | |
|
| 20 | <ul><li>'removable hoodie'</li><li>'packable hood collar'</li><li>'hooded'</li></ul> | |
|
| 52 | <ul><li>'thick'</li><li>'medium thick'</li></ul> | |
|
| 55 | <ul><li>'amber head notes'</li><li>'lime head notes'</li><li>'musk head notes'</li></ul> | |
|
| 58 | <ul><li>'back curved hem'</li><li>'twist hem'</li><li>'ribbed hem'</li></ul> | |
|
| 118 | <ul><li>'light wood'</li><li>'medium wood'</li></ul> | |
|
| 25 | <ul><li>'gifts for him'</li><li>'apres ski'</li><li>'cozy'</li></ul> | |
|
| 109 | <ul><li>'closed toe'</li><li>'square toe'</li><li>'round toe'</li></ul> | |
|
| 30 | <ul><li>'extended cuffs'</li><li>'storm cuffs'</li><li>'elastic cuff'</li></ul> | |
|
| 24 | <ul><li>'ingrown hairs'</li><li>'frizz'</li><li>'redness'</li></ul> | |
|
| 9 | <ul><li>'high cut'</li><li>'string bikini'</li></ul> | |
|
| 94 | <ul><li>'opaque'</li><li>'sheer'</li></ul> | |
|
| 16 | <ul><li>'2 card slot'</li><li>'card slots'</li></ul> | |
|
| 78 | <ul><li>'gothcore'</li><li>'vanilla girl'</li><li>'dyed out'</li></ul> | |
|
| 4 | <ul><li>'layered'</li><li>'bangle'</li><li>'cuff'</li></ul> | |
|
| 23 | <ul><li>'parfum'</li><li>'eau de toilette'</li></ul> | |
|
| 111 | <ul><li>'delicate'</li><li>'statement'</li></ul> | |
|
| 12 | <ul><li>'flat brim'</li><li>'curved brim'</li><li>'fold over brim'</li></ul> | |
|
| 98 | <ul><li>'dry'</li><li>'acne prone'</li><li>'mature'</li></ul> | |
|
| 57 | <ul><li>'stacked heel'</li><li>'kitten heel'</li><li>'cone heel'</li></ul> | |
|
| 67 | <ul><li>'id slot'</li><li>'interior pocket'</li><li>'interior zipper pocket'</li></ul> | |
|
| 31 | <ul><li>'light wash'</li><li>'medium wash'</li><li>'colored'</li></ul> | |
|
| 85 | <ul><li>'detailed stitching pant'</li><li>'simple seaming'</li></ul> | |
|
| 116 | <ul><li>'knotted'</li><li>'percale'</li><li>'waffle weave'</li></ul> | |
|
| 88 | <ul><li>'shag'</li><li>'cut pile'</li></ul> | |
|
| 74 | <ul><li>'study hall'</li><li>'y2k'</li><li>'enchanted'</li></ul> | |
|
| 72 | <ul><li>'fur'</li><li>'fleece'</li><li>'mesh'</li></ul> | |
|
| 108 | <ul><li>'animal'</li><li>'love'</li></ul> | |
|
| 73 | <ul><li>'unlined'</li><li>'fully lined'</li><li>'partially lined'</li></ul> | |
|
| 13 | <ul><li>'wide brim'</li><li>'medium brim'</li></ul> | |
|
| 76 | <ul><li>'bpa free material'</li><li>'scratch resistant material'</li></ul> | |
|
| 54 | <ul><li>'straight handle'</li><li>'curved handle'</li></ul> | |
|
| 100 | <ul><li>'rolled up sleeves'</li><li>'3/4 sleeve'</li><li>'bracelet length'</li></ul> | |
|
| 84 | <ul><li>'manual open'</li><li>'auto open'</li></ul> | |
|
| 14 | <ul><li>'wide'</li><li>'medium'</li></ul> | |
|
| 27 | <ul><li>'superhero'</li><li>'disney'</li></ul> | |
|
| 49 | <ul><li>'half rim'</li><li>'full rim'</li></ul> | |
|
| 29 | <ul><li>'tall crown'</li><li>'short crown'</li></ul> | |
|
| 106 | <ul><li>'low stretch'</li><li>'non stretch'</li></ul> | |
|
| 112 | <ul><li>'mid vamp'</li><li>'high vamp'</li></ul> | |
|
| 66 | <ul><li>'large interior'</li><li>'medium interior'</li><li>'small interior'</li></ul> | |
|
| 53 | <ul><li>'all hair types'</li><li>'damaged/dry hair'</li></ul> | |
|
| 117 | <ul><li>'light weight'</li><li>'mid weight'</li></ul> | |
|
| 81 | <ul><li>'low cut'</li><li>'mid chest neckline'</li><li>'open front'</li></ul> | |
|
| 5 | <ul><li>'thin band'</li><li>'soft band elastic'</li><li>'elastic band'</li></ul> | |
|
| 28 | <ul><li>'flat top crown'</li><li>'round crown'</li><li>'no crown'</li></ul> | |
|
| 56 | <ul><li>'ultra high heel'</li><li>'mid heel'</li><li>'high heel'</li></ul> | |
|
| 110 | <ul><li>'relaxed'</li><li>'tailored'</li></ul> | |
|
| 47 | <ul><li>'uplifting'</li><li>'bold'</li></ul> | |
|
| 3 | <ul><li>'changing pad'</li><li>'bottle pocket'</li></ul> | |
|
| 0 | <ul><li>'squeeze dispenser'</li><li>'dropper'</li></ul> | |
|
| 80 | <ul><li>'wall mount'</li><li>'ceiling mount'</li></ul> | |
|
| 6 | <ul><li>'medium'</li><li>'wide'</li></ul> | |
|
| 36 | <ul><li>'exterior pocket'</li><li>'exterior snap pocket'</li></ul> | |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
| Label | Accuracy | |
|
|:--------|:---------| |
|
| **all** | 0.5493 | |
|
|
|
## Uses |
|
|
|
### Direct Use for Inference |
|
|
|
First install the SetFit library: |
|
|
|
```bash |
|
pip install setfit |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
|
|
```python |
|
from setfit import SetFitModel |
|
|
|
# Download from the 🤗 Hub |
|
model = SetFitModel.from_pretrained("kaustubhgap/kaustubh_setfit_1iteration") |
|
# Run inference |
|
preds = model("tube") |
|
``` |
|
|
|
<!-- |
|
### Downstream Use |
|
|
|
*List how someone could finetune this model on their own dataset.* |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Set Metrics |
|
| Training set | Min | Median | Max | |
|
|:-------------|:----|:-------|:----| |
|
| Word count | 1 | 1.7047 | 6 | |
|
|
|
| Label | Training Sample Count | |
|
|:------|:----------------------| |
|
| 0 | 2 | |
|
| 1 | 5 | |
|
| 2 | 12 | |
|
| 3 | 2 | |
|
| 4 | 6 | |
|
| 5 | 3 | |
|
| 6 | 2 | |
|
| 7 | 12 | |
|
| 8 | 16 | |
|
| 9 | 2 | |
|
| 10 | 2 | |
|
| 11 | 11 | |
|
| 12 | 4 | |
|
| 13 | 2 | |
|
| 14 | 2 | |
|
| 15 | 2 | |
|
| 16 | 2 | |
|
| 17 | 6 | |
|
| 18 | 9 | |
|
| 19 | 63 | |
|
| 20 | 8 | |
|
| 21 | 31 | |
|
| 22 | 6 | |
|
| 23 | 2 | |
|
| 24 | 13 | |
|
| 25 | 5 | |
|
| 26 | 2 | |
|
| 27 | 2 | |
|
| 28 | 3 | |
|
| 29 | 2 | |
|
| 30 | 13 | |
|
| 31 | 3 | |
|
| 32 | 7 | |
|
| 33 | 22 | |
|
| 34 | 12 | |
|
| 35 | 102 | |
|
| 36 | 2 | |
|
| 37 | 119 | |
|
| 38 | 34 | |
|
| 39 | 32 | |
|
| 40 | 6 | |
|
| 41 | 2 | |
|
| 42 | 13 | |
|
| 43 | 17 | |
|
| 44 | 5 | |
|
| 45 | 10 | |
|
| 46 | 6 | |
|
| 47 | 2 | |
|
| 48 | 10 | |
|
| 49 | 2 | |
|
| 50 | 91 | |
|
| 51 | 13 | |
|
| 52 | 2 | |
|
| 53 | 2 | |
|
| 54 | 2 | |
|
| 55 | 12 | |
|
| 56 | 4 | |
|
| 57 | 7 | |
|
| 58 | 17 | |
|
| 59 | 2 | |
|
| 60 | 2 | |
|
| 61 | 7 | |
|
| 62 | 9 | |
|
| 63 | 3 | |
|
| 64 | 14 | |
|
| 65 | 53 | |
|
| 66 | 3 | |
|
| 67 | 6 | |
|
| 68 | 41 | |
|
| 69 | 41 | |
|
| 70 | 33 | |
|
| 71 | 5 | |
|
| 72 | 5 | |
|
| 73 | 4 | |
|
| 74 | 7 | |
|
| 75 | 49 | |
|
| 76 | 2 | |
|
| 77 | 23 | |
|
| 78 | 11 | |
|
| 79 | 12 | |
|
| 80 | 2 | |
|
| 81 | 5 | |
|
| 82 | 33 | |
|
| 83 | 33 | |
|
| 84 | 2 | |
|
| 85 | 2 | |
|
| 86 | 17 | |
|
| 87 | 2 | |
|
| 88 | 2 | |
|
| 89 | 10 | |
|
| 90 | 29 | |
|
| 91 | 2 | |
|
| 92 | 8 | |
|
| 93 | 21 | |
|
| 94 | 2 | |
|
| 95 | 3 | |
|
| 96 | 5 | |
|
| 97 | 10 | |
|
| 98 | 5 | |
|
| 99 | 6 | |
|
| 100 | 6 | |
|
| 101 | 12 | |
|
| 102 | 13 | |
|
| 103 | 2 | |
|
| 104 | 10 | |
|
| 105 | 28 | |
|
| 106 | 2 | |
|
| 107 | 321 | |
|
| 108 | 2 | |
|
| 109 | 10 | |
|
| 110 | 2 | |
|
| 111 | 2 | |
|
| 112 | 2 | |
|
| 113 | 15 | |
|
| 114 | 4 | |
|
| 115 | 2 | |
|
| 116 | 5 | |
|
| 117 | 2 | |
|
| 118 | 2 | |
|
|
|
### Training Hyperparameters |
|
- batch_size: (16, 16) |
|
- num_epochs: (1, 1) |
|
- max_steps: -1 |
|
- sampling_strategy: oversampling |
|
- num_iterations: 10 |
|
- body_learning_rate: (2e-05, 1e-05) |
|
- head_learning_rate: 0.01 |
|
- loss: CosineSimilarityLoss |
|
- distance_metric: cosine_distance |
|
- margin: 0.25 |
|
- end_to_end: False |
|
- use_amp: False |
|
- warmup_proportion: 0.1 |
|
- seed: 42 |
|
- eval_max_steps: -1 |
|
- load_best_model_at_end: False |
|
|
|
### Training Results |
|
| Epoch | Step | Training Loss | Validation Loss | |
|
|:------:|:----:|:-------------:|:---------------:| |
|
| 0.0004 | 1 | 0.2895 | - | |
|
| 0.0225 | 50 | 0.2059 | - | |
|
| 0.0449 | 100 | 0.1794 | - | |
|
| 0.0674 | 150 | 0.1994 | - | |
|
| 0.0898 | 200 | 0.2708 | - | |
|
| 0.1123 | 250 | 0.1355 | - | |
|
| 0.1347 | 300 | 0.0695 | - | |
|
| 0.1572 | 350 | 0.117 | - | |
|
| 0.1796 | 400 | 0.0601 | - | |
|
| 0.2021 | 450 | 0.0873 | - | |
|
| 0.2245 | 500 | 0.07 | - | |
|
| 0.2470 | 550 | 0.0805 | - | |
|
| 0.2694 | 600 | 0.0204 | - | |
|
| 0.2919 | 650 | 0.1059 | - | |
|
| 0.3143 | 700 | 0.1178 | - | |
|
| 0.3368 | 750 | 0.1804 | - | |
|
| 0.3592 | 800 | 0.0979 | - | |
|
| 0.3817 | 850 | 0.1597 | - | |
|
| 0.4041 | 900 | 0.1215 | - | |
|
| 0.4266 | 950 | 0.0188 | - | |
|
| 0.4490 | 1000 | 0.0738 | - | |
|
| 0.4715 | 1050 | 0.0635 | - | |
|
| 0.4939 | 1100 | 0.1439 | - | |
|
| 0.5164 | 1150 | 0.0684 | - | |
|
| 0.5388 | 1200 | 0.0732 | - | |
|
| 0.5613 | 1250 | 0.0401 | - | |
|
| 0.5837 | 1300 | 0.1223 | - | |
|
| 0.6062 | 1350 | 0.1044 | - | |
|
| 0.6286 | 1400 | 0.0717 | - | |
|
| 0.6511 | 1450 | 0.0413 | - | |
|
| 0.6736 | 1500 | 0.0544 | - | |
|
| 0.6960 | 1550 | 0.1419 | - | |
|
| 0.7185 | 1600 | 0.0284 | - | |
|
| 0.7409 | 1650 | 0.0484 | - | |
|
| 0.7634 | 1700 | 0.0049 | - | |
|
| 0.7858 | 1750 | 0.0229 | - | |
|
| 0.8083 | 1800 | 0.0739 | - | |
|
| 0.8307 | 1850 | 0.0371 | - | |
|
| 0.8532 | 1900 | 0.0213 | - | |
|
| 0.8756 | 1950 | 0.0753 | - | |
|
| 0.8981 | 2000 | 0.0359 | - | |
|
| 0.9205 | 2050 | 0.0232 | - | |
|
| 0.9430 | 2100 | 0.0507 | - | |
|
| 0.9654 | 2150 | 0.0258 | - | |
|
| 0.9879 | 2200 | 0.0606 | - | |
|
| 1.0 | 2227 | - | 0.2105 | |
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- SetFit: 1.0.3 |
|
- Sentence Transformers: 3.0.1 |
|
- Transformers: 4.36.1 |
|
- PyTorch: 2.0.1+cu118 |
|
- Datasets: 2.20.0 |
|
- Tokenizers: 0.15.0 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
```bibtex |
|
@article{https://doi.org/10.48550/arxiv.2209.11055, |
|
doi = {10.48550/ARXIV.2209.11055}, |
|
url = {https://arxiv.org/abs/2209.11055}, |
|
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, |
|
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, |
|
title = {Efficient Few-Shot Learning Without Prompts}, |
|
publisher = {arXiv}, |
|
year = {2022}, |
|
copyright = {Creative Commons Attribution 4.0 International} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |