XLSR-WithLM-Malayalam
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the IMASC, Indic TTS Malayalam, OpenSLR Malayalam Train split datasets. It achieves the following results on the evaluation set:
- Loss: 0.1395
- Wer: 0.2952
Trigram Language Model Trained using KENLM Library on kavyamanohar/ml-sentences dataset
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.00024
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 800
- num_epochs: 1
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
1.4912 | 0.1165 | 1000 | 0.5497 | 0.7011 |
0.5377 | 0.2330 | 2000 | 0.3292 | 0.5364 |
0.4343 | 0.3494 | 3000 | 0.2475 | 0.4424 |
0.3678 | 0.4659 | 4000 | 0.2145 | 0.4014 |
0.3345 | 0.5824 | 5000 | 0.1898 | 0.3774 |
0.3029 | 0.6989 | 6000 | 0.1718 | 0.3441 |
0.2685 | 0.8153 | 7000 | 0.1517 | 0.3135 |
0.2385 | 0.9318 | 8000 | 0.1395 | 0.2952 |
Framework versions
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 12
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for kavyamanohar/XLSR-WithLM-Malayalam
Base model
facebook/wav2vec2-xls-r-300mDatasets used to train kavyamanohar/XLSR-WithLM-Malayalam
Evaluation results
- WER on OpenSLR Malayalam -Testtest set self-reported27.300
- WER on Goole Fleurstest set self-reported37.200
- WER on MSCself-reported52.900