Edit model card

Model Card for nano-phi-115M-control-v0.1

Inspired by Phi2, and open source small language model attempts like smol_llama-101M-GQA.
Pre-trained with training 7B token from scratch, with a dataset of 0.6B token.
This model acts as a control of kenhktsui/nano-phi-115M-v0.1 which applies quality filter to dataset resulting in small dataset. It just took 2d 4h to train in Colab with a A100 40GB (~USD$ 100).
It achieves quite competitive results in evaluation given its training token, and training data size.
No alignment has been done yet.

Some metrics

  • model
    • hidden_size: 768
    • num_key_value_heads: 8 (grouped query attention)
    • num_attention_heads: 24
    • num_hidden_layers: 6
    • context length: 1024
    • total params: 115M
  • training:
    • global steps: 14,000

Open LLM Leaderboard Evaluation Results

Metric Value
Avg. 28.75
ARC (25-shot) 21.67
HellaSwag (10-shot) 26.89
MMLU (5-shot) 24.76
TruthfulQA (0-shot) 47.69
Winogrande (5-shot) 51.46
GSM8K (5-shot) 0.0

Details:

hf-causal-experimental (pretrained=/content/lm-evaluation-harness/artifacts/checkpoint-ehgq969i:v13,use_accelerate=false,trust_remote_code=True), limit: None, provide_description: False, num_fewshot: 0, batch_size: 16

Task Version Metric Value Stderr
arc_easy 0 acc 0.3973 ± 0.0100
acc_norm 0.3531 ± 0.0098

hf-causal-experimental (pretrained=/content/lm-evaluation-harness/artifacts/checkpoint-ehgq969i:v13,use_accelerate=false,trust_remote_code=True), limit: None, provide_description: False, num_fewshot: 25, batch_size: 16

Task Version Metric Value Stderr
arc_challenge 0 acc 0.1843 ± 0.0113
acc_norm 0.2167 ± 0.0120

hf-causal-experimental (pretrained=/content/lm-evaluation-harness/artifacts/checkpoint-ehgq969i:v13,use_accelerate=false,trust_remote_code=True), limit: None, provide_description: False, num_fewshot: 10, batch_size: 16

Task Version Metric Value Stderr
hellaswag 0 acc 0.2682 ± 0.0044
acc_norm 0.2689 ± 0.0044

hf-causal-experimental (pretrained=/content/lm-evaluation-harness/artifacts/checkpoint-ehgq969i:v13,use_accelerate=false,trust_remote_code=True), limit: None, provide_description: False, num_fewshot: 0, batch_size: 16

Task Version Metric Value Stderr
truthfulqa_mc 1 mc1 0.2619 ± 0.0154
mc2 0.4769 ± 0.0156

hf-causal-experimental (pretrained=/content/lm-evaluation-harness/artifacts/checkpoint-ehgq969i:v13,use_accelerate=false,trust_remote_code=True), limit: None, provide_description: False, num_fewshot: 5, batch_size: 16

Task Version Metric Value Stderr
hendrycksTest-abstract_algebra 1 acc 0.2200 ± 0.0416
acc_norm 0.2200 ± 0.0416
hendrycksTest-anatomy 1 acc 0.3333 ± 0.0407
acc_norm 0.3333 ± 0.0407
hendrycksTest-astronomy 1 acc 0.2895 ± 0.0369
acc_norm 0.2895 ± 0.0369
hendrycksTest-business_ethics 1 acc 0.2000 ± 0.0402
acc_norm 0.2000 ± 0.0402
hendrycksTest-clinical_knowledge 1 acc 0.2189 ± 0.0254
acc_norm 0.2189 ± 0.0254
hendrycksTest-college_biology 1 acc 0.2222 ± 0.0348
acc_norm 0.2222 ± 0.0348
hendrycksTest-college_chemistry 1 acc 0.1700 ± 0.0378
acc_norm 0.1700 ± 0.0378
hendrycksTest-college_computer_science 1 acc 0.3000 ± 0.0461
acc_norm 0.3000 ± 0.0461
hendrycksTest-college_mathematics 1 acc 0.2500 ± 0.0435
acc_norm 0.2500 ± 0.0435
hendrycksTest-college_medicine 1 acc 0.1965 ± 0.0303
acc_norm 0.1965 ± 0.0303
hendrycksTest-college_physics 1 acc 0.2353 ± 0.0422
acc_norm 0.2353 ± 0.0422
hendrycksTest-computer_security 1 acc 0.2000 ± 0.0402
acc_norm 0.2000 ± 0.0402
hendrycksTest-conceptual_physics 1 acc 0.2043 ± 0.0264
acc_norm 0.2043 ± 0.0264
hendrycksTest-econometrics 1 acc 0.2456 ± 0.0405
acc_norm 0.2456 ± 0.0405
hendrycksTest-electrical_engineering 1 acc 0.2621 ± 0.0366
acc_norm 0.2621 ± 0.0366
hendrycksTest-elementary_mathematics 1 acc 0.2566 ± 0.0225
acc_norm 0.2566 ± 0.0225
hendrycksTest-formal_logic 1 acc 0.1587 ± 0.0327
acc_norm 0.1587 ± 0.0327
hendrycksTest-global_facts 1 acc 0.1600 ± 0.0368
acc_norm 0.1600 ± 0.0368
hendrycksTest-high_school_biology 1 acc 0.3226 ± 0.0266
acc_norm 0.3226 ± 0.0266
hendrycksTest-high_school_chemistry 1 acc 0.2956 ± 0.0321
acc_norm 0.2956 ± 0.0321
hendrycksTest-high_school_computer_science 1 acc 0.2800 ± 0.0451
acc_norm 0.2800 ± 0.0451
hendrycksTest-high_school_european_history 1 acc 0.2606 ± 0.0343
acc_norm 0.2606 ± 0.0343
hendrycksTest-high_school_geography 1 acc 0.2626 ± 0.0314
acc_norm 0.2626 ± 0.0314
hendrycksTest-high_school_government_and_politics 1 acc 0.2176 ± 0.0298
acc_norm 0.2176 ± 0.0298
hendrycksTest-high_school_macroeconomics 1 acc 0.2128 ± 0.0208
acc_norm 0.2128 ± 0.0208
hendrycksTest-high_school_mathematics 1 acc 0.2630 ± 0.0268
acc_norm 0.2630 ± 0.0268
hendrycksTest-high_school_microeconomics 1 acc 0.2227 ± 0.0270
acc_norm 0.2227 ± 0.0270
hendrycksTest-high_school_physics 1 acc 0.3046 ± 0.0376
acc_norm 0.3046 ± 0.0376
hendrycksTest-high_school_psychology 1 acc 0.2055 ± 0.0173
acc_norm 0.2055 ± 0.0173
hendrycksTest-high_school_statistics 1 acc 0.4815 ± 0.0341
acc_norm 0.4815 ± 0.0341
hendrycksTest-high_school_us_history 1 acc 0.2059 ± 0.0284
acc_norm 0.2059 ± 0.0284
hendrycksTest-high_school_world_history 1 acc 0.2574 ± 0.0285
acc_norm 0.2574 ± 0.0285
hendrycksTest-human_aging 1 acc 0.2063 ± 0.0272
acc_norm 0.2063 ± 0.0272
hendrycksTest-human_sexuality 1 acc 0.2443 ± 0.0377
acc_norm 0.2443 ± 0.0377
hendrycksTest-international_law 1 acc 0.2727 ± 0.0407
acc_norm 0.2727 ± 0.0407
hendrycksTest-jurisprudence 1 acc 0.2130 ± 0.0396
acc_norm 0.2130 ± 0.0396
hendrycksTest-logical_fallacies 1 acc 0.2515 ± 0.0341
acc_norm 0.2515 ± 0.0341
hendrycksTest-machine_learning 1 acc 0.2321 ± 0.0401
acc_norm 0.2321 ± 0.0401
hendrycksTest-management 1 acc 0.2039 ± 0.0399
acc_norm 0.2039 ± 0.0399
hendrycksTest-marketing 1 acc 0.1966 ± 0.0260
acc_norm 0.1966 ± 0.0260
hendrycksTest-medical_genetics 1 acc 0.3000 ± 0.0461
acc_norm 0.3000 ± 0.0461
hendrycksTest-miscellaneous 1 acc 0.2631 ± 0.0157
acc_norm 0.2631 ± 0.0157
hendrycksTest-moral_disputes 1 acc 0.2457 ± 0.0232
acc_norm 0.2457 ± 0.0232
hendrycksTest-moral_scenarios 1 acc 0.2682 ± 0.0148
acc_norm 0.2682 ± 0.0148
hendrycksTest-nutrition 1 acc 0.2451 ± 0.0246
acc_norm 0.2451 ± 0.0246
hendrycksTest-philosophy 1 acc 0.2605 ± 0.0249
acc_norm 0.2605 ± 0.0249
hendrycksTest-prehistory 1 acc 0.2932 ± 0.0253
acc_norm 0.2932 ± 0.0253
hendrycksTest-professional_accounting 1 acc 0.2340 ± 0.0253
acc_norm 0.2340 ± 0.0253
hendrycksTest-professional_law 1 acc 0.2432 ± 0.0110
acc_norm 0.2432 ± 0.0110
hendrycksTest-professional_medicine 1 acc 0.4301 ± 0.0301
acc_norm 0.4301 ± 0.0301
hendrycksTest-professional_psychology 1 acc 0.2369 ± 0.0172
acc_norm 0.2369 ± 0.0172
hendrycksTest-public_relations 1 acc 0.2091 ± 0.0390
acc_norm 0.2091 ± 0.0390
hendrycksTest-security_studies 1 acc 0.2408 ± 0.0274
acc_norm 0.2408 ± 0.0274
hendrycksTest-sociology 1 acc 0.2388 ± 0.0301
acc_norm 0.2388 ± 0.0301
hendrycksTest-us_foreign_policy 1 acc 0.2600 ± 0.0441
acc_norm 0.2600 ± 0.0441
hendrycksTest-virology 1 acc 0.2048 ± 0.0314
acc_norm 0.2048 ± 0.0314
hendrycksTest-world_religions 1 acc 0.2047 ± 0.0309
acc_norm 0.2047 ± 0.0309

hf-causal-experimental (pretrained=/content/lm-evaluation-harness/artifacts/checkpoint-ehgq969i:v13,use_accelerate=false,trust_remote_code=True), limit: None, provide_description: False, num_fewshot: 5, batch_size: 16

Task Version Metric Value Stderr
winogrande 0 acc 0.5146 ± 0.014

hf-causal-experimental (pretrained=/content/lm-evaluation-harness/artifacts/checkpoint-ehgq969i:v13,use_accelerate=false,trust_remote_code=True), limit: None, provide_description: False, num_fewshot: 5, batch_size: 16

Task Version Metric Value Stderr
gsm8k 0 acc 0 ± 0

Model Details

Model Description

This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.

  • Developed by: [More Information Needed]
  • Funded by [optional]: [More Information Needed]
  • Shared by [optional]: [More Information Needed]
  • Model type: [More Information Needed]
  • Language(s) (NLP): [More Information Needed]
  • License: [More Information Needed]
  • Finetuned from model [optional]: [More Information Needed]

Model Sources [optional]

  • Repository: [More Information Needed]
  • Paper [optional]: [More Information Needed]
  • Demo [optional]: [More Information Needed]

Uses

Direct Use

[More Information Needed]

Downstream Use [optional]

[More Information Needed]

Out-of-Scope Use

[More Information Needed]

Bias, Risks, and Limitations

[More Information Needed]

Recommendations

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.

How to Get Started with the Model

Use the code below to get started with the model.

[More Information Needed]

Training Details

Training Data

[More Information Needed]

Training Procedure

Preprocessing [optional]

[More Information Needed]

Training Hyperparameters

  • Training regime: [More Information Needed]

Speeds, Sizes, Times [optional]

[More Information Needed]

Evaluation

Testing Data, Factors & Metrics

Testing Data

[More Information Needed]

Factors

[More Information Needed]

Metrics

[More Information Needed]

Results

[More Information Needed]

Summary

Model Examination [optional]

[More Information Needed]

Environmental Impact

Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).

  • Hardware Type: [More Information Needed]
  • Hours used: [More Information Needed]
  • Cloud Provider: [More Information Needed]
  • Compute Region: [More Information Needed]
  • Carbon Emitted: [More Information Needed]

Technical Specifications [optional]

Model Architecture and Objective

[More Information Needed]

Compute Infrastructure

[More Information Needed]

Hardware

[More Information Needed]

Software

[More Information Needed]

Citation [optional]

BibTeX:

[More Information Needed]

APA:

[More Information Needed]

Glossary [optional]

[More Information Needed]

More Information [optional]

[More Information Needed]

Model Card Authors [optional]

[More Information Needed]

Model Card Contact

[More Information Needed]

Downloads last month
23
Safetensors
Model size
115M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Datasets used to train kenhktsui/nano-phi-115M-control-v0.1

Collection including kenhktsui/nano-phi-115M-control-v0.1