ind-to-bbc-nmt-v4 / README.md
kepinsam's picture
End of training
e82aaf8 verified
---
license: cc-by-nc-4.0
base_model: facebook/nllb-200-distilled-600M
tags:
- generated_from_trainer
datasets:
- nusatranslation_mt
metrics:
- sacrebleu
model-index:
- name: ind-to-bbc-nmt-v4
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: nusatranslation_mt
type: nusatranslation_mt
config: nusatranslation_mt_btk_ind_source
split: test
args: nusatranslation_mt_btk_ind_source
metrics:
- name: Sacrebleu
type: sacrebleu
value: 30.3825
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ind-to-bbc-nmt-v4
This model is a fine-tuned version of [facebook/nllb-200-distilled-600M](https://huggingface.co/facebook/nllb-200-distilled-600M) on the nusatranslation_mt dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2930
- Sacrebleu: 30.3825
- Gen Len: 45.3035
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Sacrebleu | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:-------:|
| 5.3256 | 1.0 | 207 | 2.9469 | 25.3735 | 44.648 |
| 2.2418 | 2.0 | 414 | 1.5816 | 28.6826 | 45.3055 |
| 1.4644 | 3.0 | 621 | 1.3598 | 30.2304 | 45.373 |
| 1.2707 | 4.0 | 828 | 1.3034 | 30.4544 | 45.2655 |
| 1.2046 | 5.0 | 1035 | 1.2930 | 30.3825 | 45.3035 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.14.6
- Tokenizers 0.19.1