|
--- |
|
license: cc-by-nc-4.0 |
|
base_model: facebook/nllb-200-distilled-600M |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- nusatranslation_mt |
|
metrics: |
|
- sacrebleu |
|
model-index: |
|
- name: ind-to-bbc-nmt-v5 |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: nusatranslation_mt |
|
type: nusatranslation_mt |
|
config: nusatranslation_mt_btk_ind_source |
|
split: test |
|
args: nusatranslation_mt_btk_ind_source |
|
metrics: |
|
- name: Sacrebleu |
|
type: sacrebleu |
|
value: 31.266 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# ind-to-bbc-nmt-v5 |
|
|
|
This model is a fine-tuned version of [facebook/nllb-200-distilled-600M](https://huggingface.co/facebook/nllb-200-distilled-600M) on the nusatranslation_mt dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.1894 |
|
- Sacrebleu: 31.266 |
|
- Gen Len: 44.965 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 10 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Sacrebleu | Gen Len | |
|
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:-------:| |
|
| 3.6651 | 1.0 | 1650 | 1.4838 | 26.4515 | 46.9715 | |
|
| 1.3236 | 2.0 | 3300 | 1.2132 | 30.7977 | 45.688 | |
|
| 1.0377 | 3.0 | 4950 | 1.1590 | 31.5249 | 45.2095 | |
|
| 0.871 | 4.0 | 6600 | 1.1329 | 31.7139 | 44.965 | |
|
| 0.7493 | 5.0 | 8250 | 1.1319 | 31.3062 | 45.139 | |
|
| 0.6536 | 6.0 | 9900 | 1.1331 | 30.8031 | 45.242 | |
|
| 0.5772 | 7.0 | 11550 | 1.1492 | 31.1586 | 45.1815 | |
|
| 0.5195 | 8.0 | 13200 | 1.1684 | 31.0977 | 45.019 | |
|
| 0.4763 | 9.0 | 14850 | 1.1798 | 31.2488 | 44.8915 | |
|
| 0.4478 | 10.0 | 16500 | 1.1894 | 31.266 | 44.965 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.2 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.14.6 |
|
- Tokenizers 0.19.1 |
|
|