|
--- |
|
language: |
|
- pa |
|
license: apache-2.0 |
|
tags: |
|
- automatic-speech-recognition |
|
- hf-asr-leaderboard |
|
- robust-speech-event |
|
datasets: |
|
- mozilla-foundation/common_voice_8_0 |
|
metrics: |
|
- wer |
|
- cer |
|
base_model: Harveenchadha/vakyansh-wav2vec2-punjabi-pam-10 |
|
model-index: |
|
- name: wav2vec2-punjabi-V8-Abid |
|
results: |
|
- task: |
|
type: automatic-speech-recognition |
|
name: Speech Recognition |
|
dataset: |
|
name: Common Voice pa-IN |
|
type: mozilla-foundation/common_voice_8_0 |
|
args: pa-IN |
|
metrics: |
|
- type: wer |
|
value: 36.02 |
|
name: Test WER With LM |
|
- type: cer |
|
value: 12.81 |
|
name: Test CER With LM |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# wav2vec2-large-xlsr-53-punjabi |
|
|
|
This model is a fine-tuned version of [Harveenchadha/vakyansh-wav2vec2-punjabi-pam-10](https://huggingface.co/Harveenchadha/vakyansh-wav2vec2-punjabi-pam-10) on the common_voice dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.2101 |
|
- Wer: 0.4939 |
|
- Cer: 0.2238 |
|
|
|
#### Evaluation Commands |
|
1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` |
|
|
|
```bash |
|
python eval.py --model_id kingabzpro/wav2vec2-large-xlsr-53-punjabi --dataset mozilla-foundation/common_voice_8_0 --config pa-IN --split test |
|
``` |
|
|
|
### Inference With LM |
|
|
|
```python |
|
import torch |
|
from datasets import load_dataset |
|
from transformers import AutoModelForCTC, AutoProcessor |
|
import torchaudio.functional as F |
|
model_id = "kingabzpro/wav2vec2-large-xlsr-53-punjabi" |
|
sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "pa-IN", split="test", streaming=True, use_auth_token=True)) |
|
sample = next(sample_iter) |
|
resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() |
|
model = AutoModelForCTC.from_pretrained(model_id) |
|
processor = AutoProcessor.from_pretrained(model_id) |
|
input_values = processor(resampled_audio, return_tensors="pt").input_values |
|
with torch.no_grad(): |
|
logits = model(input_values).logits |
|
transcription = processor.batch_decode(logits.numpy()).text |
|
|
|
``` |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0003 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 200 |
|
- num_epochs: 30 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:| |
|
| 11.0563 | 3.7 | 100 | 1.9492 | 0.7123 | 0.3872 | |
|
| 1.6715 | 7.41 | 200 | 1.3142 | 0.6433 | 0.3086 | |
|
| 0.9117 | 11.11 | 300 | 1.2733 | 0.5657 | 0.2627 | |
|
| 0.666 | 14.81 | 400 | 1.2730 | 0.5598 | 0.2534 | |
|
| 0.4225 | 18.52 | 500 | 1.2548 | 0.5300 | 0.2399 | |
|
| 0.3209 | 22.22 | 600 | 1.2166 | 0.5229 | 0.2372 | |
|
| 0.2678 | 25.93 | 700 | 1.1795 | 0.5041 | 0.2276 | |
|
| 0.2088 | 29.63 | 800 | 1.2101 | 0.4939 | 0.2238 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.17.0.dev0 |
|
- Pytorch 1.10.2+cu102 |
|
- Datasets 1.18.2.dev0 |
|
- Tokenizers 0.11.0 |
|
|