metadata
language:
- sk
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- sts
license: cc
datasets:
- glue
metrics:
- spearmanr
widget:
source_sentence: Izrael uskutočnil letecké údery v blízkosti Damasku.
sentences:
- Izrael uskutočnil vzdušný útok na Sýriu.
- Pes leží na gauči a má hlavu na bielom vankúši.
Sentence similarity model based on SlovakBERT
This is a sentence similarity model based on SlovakBERT. The model was fine-tuned using STSbenchmark [Cer et al 2017] translated to Slovak using M2M100. The model can be used as an universal sentence encoder for Slovak sentences.
Results
The model was evaluated in our paper [Pikuliak et al 2021, Section 4.3]. It achieves Spearman correlation on STSbenchmark test set.
Usage
Using this model becomes easy when you have sentence-transformers installed:
pip install -U sentence-transformers
Then you can use the model like this:
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('kinit/slovakbert-sts-stsb')
embeddings = model.encode(sentences)
print(embeddings)
Cite
@article{DBLP:journals/corr/abs-2109-15254,
author = {Mat{\'{u}}s Pikuliak and
Stefan Grivalsky and
Martin Konopka and
Miroslav Blst{\'{a}}k and
Martin Tamajka and
Viktor Bachrat{\'{y}} and
Mari{\'{a}}n Simko and
Pavol Bal{\'{a}}zik and
Michal Trnka and
Filip Uhl{\'{a}}rik},
title = {SlovakBERT: Slovak Masked Language Model},
journal = {CoRR},
volume = {abs/2109.15254},
year = {2021},
url = {https://arxiv.org/abs/2109.15254},
eprinttype = {arXiv},
eprint = {2109.15254},
}