cs_mT5_0.01_50_v0.2 / README.md
kmok1's picture
End of training
3c5fada verified
---
license: apache-2.0
base_model: google/mt5-base
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: cs_mT5_0.01_50_v0.2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# cs_mT5_0.01_50_v0.2
This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 6.5103
- Bleu: 0.6102
- Gen Len: 19.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.01
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|
| 7.711 | 1.0 | 6 | 12.1049 | 0.1934 | 17.0952 |
| 9.9285 | 2.0 | 12 | 7.2425 | 0.1897 | 19.0 |
| 6.1686 | 3.0 | 18 | 6.5311 | 0.3794 | 19.0 |
| 6.0527 | 4.0 | 24 | 6.4394 | 0.6102 | 19.0 |
| 6.0341 | 5.0 | 30 | 6.3821 | 0.6102 | 19.0 |
| 4.9353 | 6.0 | 36 | 6.2037 | 0.704 | 19.0 |
| 5.3025 | 7.0 | 42 | 6.2245 | 0.2318 | 19.0 |
| 5.4882 | 8.0 | 48 | 6.4244 | 0.0 | 19.0 |
| 4.3601 | 9.0 | 54 | 6.4695 | 0.0 | 19.0 |
| 4.8256 | 10.0 | 60 | 6.1939 | 0.6102 | 19.0 |
| 6.2603 | 11.0 | 66 | 7.2294 | 0.6102 | 19.0 |
| 5.5046 | 12.0 | 72 | 7.1054 | 0.704 | 19.0 |
| 5.6536 | 13.0 | 78 | 6.2424 | 0.6102 | 19.0 |
| 5.2092 | 14.0 | 84 | 6.2343 | 0.2016 | 19.0 |
| 4.5288 | 15.0 | 90 | 6.1996 | 0.6102 | 19.0 |
| 5.3447 | 16.0 | 96 | 6.4456 | 0.0 | 3.0 |
| 4.7282 | 17.0 | 102 | 6.0271 | 0.2172 | 19.0 |
| 5.3814 | 18.0 | 108 | 6.2591 | 0.6102 | 19.0 |
| 3.8156 | 19.0 | 114 | 6.2314 | 0.6102 | 19.0 |
| 4.9031 | 20.0 | 120 | 6.3173 | 0.1986 | 19.0 |
| 4.4266 | 21.0 | 126 | 6.5376 | 0.6102 | 19.0 |
| 4.1837 | 22.0 | 132 | 6.1329 | 0.6405 | 19.0 |
| 4.2994 | 23.0 | 138 | 6.1589 | 0.6102 | 19.0 |
| 4.3625 | 24.0 | 144 | 6.0873 | 0.6218 | 19.0 |
| 4.8956 | 25.0 | 150 | 6.2374 | 0.2318 | 19.0 |
| 4.3551 | 26.0 | 156 | 6.2230 | 0.6102 | 19.0 |
| 4.025 | 27.0 | 162 | 6.2925 | 0.6929 | 19.0 |
| 3.9071 | 28.0 | 168 | 6.2040 | 0.6102 | 19.0 |
| 4.1388 | 29.0 | 174 | 6.3024 | 0.6218 | 19.0 |
| 3.942 | 30.0 | 180 | 6.4055 | 0.2176 | 19.0 |
| 4.0977 | 31.0 | 186 | 6.3005 | 0.2874 | 19.0 |
| 4.6125 | 32.0 | 192 | 6.2886 | 0.6102 | 19.0 |
| 4.4031 | 33.0 | 198 | 6.2948 | 0.704 | 19.0 |
| 3.8115 | 34.0 | 204 | 6.2838 | 0.6102 | 19.0 |
| 4.8767 | 35.0 | 210 | 6.2233 | 0.6102 | 19.0 |
| 3.6557 | 36.0 | 216 | 6.2860 | 0.6102 | 19.0 |
| 3.9009 | 37.0 | 222 | 6.3841 | 0.6102 | 19.0 |
| 4.4334 | 38.0 | 228 | 6.3916 | 0.6102 | 19.0 |
| 3.3359 | 39.0 | 234 | 6.3696 | 0.6102 | 19.0 |
| 4.2239 | 40.0 | 240 | 6.4627 | 0.6102 | 19.0 |
| 3.7335 | 41.0 | 246 | 6.5189 | 0.6102 | 19.0 |
| 3.544 | 42.0 | 252 | 6.4958 | 0.6102 | 19.0 |
| 3.77 | 43.0 | 258 | 6.5922 | 0.6102 | 19.0 |
| 3.4661 | 44.0 | 264 | 6.6700 | 0.6218 | 19.0 |
| 4.0715 | 45.0 | 270 | 6.6247 | 0.6102 | 19.0 |
| 3.8948 | 46.0 | 276 | 6.5279 | 0.6102 | 19.0 |
| 3.8278 | 47.0 | 282 | 6.4594 | 0.6102 | 19.0 |
| 4.1446 | 48.0 | 288 | 6.4570 | 0.6102 | 19.0 |
| 3.7627 | 49.0 | 294 | 6.4923 | 0.6102 | 19.0 |
| 3.5996 | 50.0 | 300 | 6.5103 | 0.6102 | 19.0 |
### Framework versions
- Transformers 4.35.2
- Pytorch 1.13.1+cu117
- Datasets 2.17.0
- Tokenizers 0.15.1