Mistral-7B-v0.1
Description
This repo contains GGUF format model files for Mistral-7B-v0.1.
Files Provided
Name | Quant | Bits | File Size | Remark |
---|---|---|---|---|
mistral-7b-v0.1.IQ3_XXS.gguf | IQ3_XXS | 3 | 3.02 GB | 3.06 bpw quantization |
mistral-7b-v0.1.IQ3_S.gguf | IQ3_S | 3 | 3.18 GB | 3.44 bpw quantization |
mistral-7b-v0.1.IQ3_M.gguf | IQ3_M | 3 | 3.28 GB | 3.66 bpw quantization mix |
mistral-7b-v0.1.IQ4_NL.gguf | IQ4_NL | 4 | 4.16 GB | 4.25 bpw non-linear quantization |
mistral-7b-v0.1.Q4_K_M.gguf | Q4_K_M | 4 | 4.37 GB | 3.80G, +0.0532 ppl |
mistral-7b-v0.1.Q5_K_M.gguf | Q5_K_M | 5 | 5.13 GB | 4.45G, +0.0122 ppl |
mistral-7b-v0.1.Q6_K.gguf | Q6_K | 6 | 5.94 GB | 5.15G, +0.0008 ppl |
mistral-7b-v0.1.Q8_0.gguf | Q8_0 | 8 | 7.70 GB | 6.70G, +0.0004 ppl |
Parameters
path | type | architecture | rope_theta | sliding_win | max_pos_embed |
---|---|---|---|---|---|
mistralai/Mistral-7B-v0.1 | mistral | MistralForCausalLM | 10000.0 | 4096 | 32768 |
Original Model Card
Model Card for Mistral-7B-v0.1
The Mistral-7B-v0.1 Large Language Model (LLM) is a pretrained generative text model with 7 billion parameters. Mistral-7B-v0.1 outperforms Llama 2 13B on all benchmarks we tested.
For full details of this model please read our paper and release blog post.
Model Architecture
Mistral-7B-v0.1 is a transformer model, with the following architecture choices:
- Grouped-Query Attention
- Sliding-Window Attention
- Byte-fallback BPE tokenizer
Troubleshooting
- If you see the following error:
KeyError: 'mistral'
- Or:
NotImplementedError: Cannot copy out of meta tensor; no data!
Ensure you are utilizing a stable version of Transformers, 4.34.0 or newer.
Notice
Mistral 7B is a pretrained base model and therefore does not have any moderation mechanisms.
The Mistral AI Team
Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.
- Downloads last month
- 90