koesn's picture
Update README.md
32566f5 verified
---
tags:
- merge
- mergekit
- lazymergekit
- mlabonne/AlphaMonarch-7B
- mlabonne/NeuralMonarch-7B
base_model:
- mlabonne/AlphaMonarch-7B
- mlabonne/NeuralMonarch-7B
license: apache-2.0
---
# NeuralMaxime-7B-slerp-GGUF
## Description
This repo contains GGUF format model files for NeuralMaxime-7B-slerp-GGUF.
## Files Provided
| Name | Quant | Bits | File Size | Remark |
| ---------------------------------- | ------- | ---- | --------- | -------------------------------- |
| neuralmaxime-7b-slerp.IQ3_XXS.gguf | IQ3_XXS | 3 | 3.02 GB | 3.06 bpw quantization |
| neuralmaxime-7b-slerp.IQ3_S.gguf | IQ3_S | 3 | 3.18 GB | 3.44 bpw quantization |
| neuralmaxime-7b-slerp.IQ3_M.gguf | IQ3_M | 3 | 3.28 GB | 3.66 bpw quantization mix |
| neuralmaxime-7b-slerp.Q4_0.gguf | Q4_0 | 4 | 4.11 GB | 3.56G, +0.2166 ppl |
| neuralmaxime-7b-slerp.IQ4_NL.gguf | IQ4_NL | 4 | 4.16 GB | 4.25 bpw non-linear quantization |
| neuralmaxime-7b-slerp.Q4_K_M.gguf | Q4_K_M | 4 | 4.37 GB | 3.80G, +0.0532 ppl |
| neuralmaxime-7b-slerp.Q5_K_M.gguf | Q5_K_M | 5 | 5.13 GB | 4.45G, +0.0122 ppl |
| neuralmaxime-7b-slerp.Q6_K.gguf | Q6_K | 6 | 5.94 GB | 5.15G, +0.0008 ppl |
| neuralmaxime-7b-slerp.Q8_0.gguf | Q8_0 | 8 | 7.70 GB | 6.70G, +0.0004 ppl |
## Parameters
| path | type | architecture | rope_theta | sliding_win | max_pos_embed |
| ----------------------------- | ------- | ------------------ | ---------- | ----------- | ------------- |
| Kukedlc/NeuralMaxime-7B-slerp | mistral | MistralForCausalLM | 10000.0 | 4096 | 32768 |
## Benchmarks
![](https://i.ibb.co/g7sqr1r/Neural-Maxime-7-B-slerp.png)
# Original Model Card
# NeuralMaxime-7B-slerp
![](https://raw.githubusercontent.com/kukedlc87/imagenes/main/DALL%C2%B7E%202024-02-18%2015.45.07%20-%20Visualize%20a%20highly%20sophisticated%2C%20high-definition%20robot%20named%20Neural%20Maxime.%20This%20language%20model%20robot%20is%20distinguished%20by%20its%20innovative%20design%2C%20feat.webp)
NeuralMaxime-7B-slerp is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [mlabonne/AlphaMonarch-7B](https://huggingface.co/mlabonne/AlphaMonarch-7B)
* [mlabonne/NeuralMonarch-7B](https://huggingface.co/mlabonne/NeuralMonarch-7B)
## 🧩 Configuration
```yaml
slices:
- sources:
- model: mlabonne/AlphaMonarch-7B
layer_range: [0, 32]
- model: mlabonne/NeuralMonarch-7B
layer_range: [0, 32]
merge_method: slerp
base_model: mlabonne/AlphaMonarch-7B
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "Kukedlc/NeuralMaxime-7B-slerp"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```