Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: EleutherAI/pythia-70m-deduped
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - f9d583cbe4595761_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/f9d583cbe4595761_train_data.json
  type:
    field_input: ''
    field_instruction: Human
    field_output: Assistant
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
device: cuda
early_stopping_patience: 1
eval_max_new_tokens: 128
eval_steps: 5
eval_table_size: null
evals_per_epoch: null
flash_attention: false
fp16: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: kokovova/246dadb7-791d-4d17-a594-571323243195
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 3
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
  0: 78GiB
max_steps: 30
micro_batch_size: 2
mlflow_experiment_name: /tmp/f9d583cbe4595761_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 10
sequence_len: 1024
special_tokens:
  pad_token: <|endoftext|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: true
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 79866d34-ead5-4f60-be5b-3064df991a9d
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 79866d34-ead5-4f60-be5b-3064df991a9d
warmup_steps: 5
weight_decay: 0.01
xformers_attention: true

246dadb7-791d-4d17-a594-571323243195

This model is a fine-tuned version of EleutherAI/pythia-70m-deduped on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 5.4873

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 5
  • training_steps: 30

Training results

Training Loss Epoch Step Validation Loss
No log 0.0002 1 5.8010
22.4161 0.0008 5 5.7294
21.2196 0.0015 10 5.5760
20.7561 0.0023 15 5.4707
23.6286 0.0031 20 5.4967
22.6912 0.0038 25 5.4920
21.1816 0.0046 30 5.4873

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
8
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model’s pipeline type.

Model tree for kokovova/246dadb7-791d-4d17-a594-571323243195

Adapter
(259)
this model