Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: unsloth/Qwen2-0.5B-Instruct
bf16: true
chat_template: llama3
dataloader_num_workers: 8
dataset_prepared_path: null
datasets:
- data_files:
  - 406dc674665f91c3_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/406dc674665f91c3_train_data.json
  type:
    field_instruction: en_US
    field_output: fr_FR
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
do_eval: true
early_stopping_patience: 3
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
gradient_accumulation_steps: 1
gradient_checkpointing: true
group_by_length: true
hub_model_id: kokovova/ba7f8d75-15f0-4c39-a3c1-02b0569a34a6
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 1.01e-05
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 128
lora_dropout: 0.03
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: linear
max_grad_norm: 1.0
max_steps: 200
micro_batch_size: 8
mlflow_experiment_name: /tmp/G.O.D/406dc674665f91c3_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
  adam_beta1: 0.9
  adam_beta2: 0.95
  adam_epsilon: 1e-5
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: ad2de90a-4a23-47f3-b15b-240988636b6a
wandb_project: cold8
wandb_run: your_name
wandb_runid: ad2de90a-4a23-47f3-b15b-240988636b6a
warmup_steps: 20
weight_decay: 0.0
xformers_attention: null

ba7f8d75-15f0-4c39-a3c1-02b0569a34a6

This model is a fine-tuned version of unsloth/Qwen2-0.5B-Instruct on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.8553

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1.01e-05
  • train_batch_size: 8
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 20
  • training_steps: 200

Training results

Training Loss Epoch Step Validation Loss
No log 0.0005 1 5.3493
4.1301 0.0256 50 2.7289
2.9711 0.0513 100 2.0615
2.6023 0.0769 150 1.8998
2.7418 0.1026 200 1.8553

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
12
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for kokovova/ba7f8d75-15f0-4c39-a3c1-02b0569a34a6

Adapter
(314)
this model