Automatic Speech Recognition
Transformers
Safetensors
Japanese
whisper
audio
hf-asr-leaderboard
Inference Endpoints
asahi417 commited on
Commit
635d6b6
β€’
1 Parent(s): fb72b03

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +217 -196
README.md CHANGED
@@ -1,199 +1,220 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
+ language: ja
3
+ license: apache-2.0
4
+ tags:
5
+ - audio
6
+ - automatic-speech-recognition
7
+ - hf-asr-leaderboard
8
+ metrics:
9
+ - wer
10
+ widget:
11
+ - example_title: CommonVoice 8.0 (Test Split)
12
+ src: https://huggingface.co/datasets/japanese-asr/ja_asr.common_voice_8_0/resolve/main/sample.flac
13
+ - example_title: JSUT Basic 5000
14
+ src: https://huggingface.co/datasets/japanese-asr/ja_asr.jsut_basic5000/resolve/main/sample.flac
15
+ - example_title: ReazonSpeech (Test Split)
16
+ src: https://huggingface.co/datasets/japanese-asr/ja_asr.reazonspeech_test/resolve/main/sample.flac
17
+ pipeline_tag: automatic-speech-recognition
18
+ model-index:
19
+ - name: kotoba-tech/kotoba-whisper-v2.1
20
+ results:
21
+ - task:
22
+ type: automatic-speech-recognition
23
+ dataset:
24
+ name: CommonVoice_8.0 (Japanese)
25
+ type: japanese-asr/ja_asr.common_voice_8_0
26
+ metrics:
27
+ - type: WER
28
+ value: 59.27
29
+ name: WER
30
+ - type: CER
31
+ value: 9.44
32
+ name: CER
33
+ - task:
34
+ type: automatic-speech-recognition
35
+ dataset:
36
+ name: ReazonSpeech (Test)
37
+ type: japanese-asr/ja_asr.reazonspeech_test
38
+ metrics:
39
+ - type: WER
40
+ value: 56.62
41
+ name: WER
42
+ - type: CER
43
+ value: 12.6
44
+ name: CER
45
+ - task:
46
+ type: automatic-speech-recognition
47
+ dataset:
48
+ name: JSUT Basic5000
49
+ type: japanese-asr/ja_asr.jsut_basic5000
50
+ metrics:
51
+ - type: WER
52
+ value: 64.36
53
+ name: WER
54
+ - type: CER
55
+ value: 8.48
56
+ name: CER
57
  ---
58
 
59
+ # Kotoba-Whisper-v2.1
60
+ _Kotoba-Whisper-v2.1_ is a Japanese ASR model based on [kotoba-tech/kotoba-whisper-v2.0](https://huggingface.co/kotoba-tech/kotoba-whisper-v2.0), with
61
+ additional postprocessing stacks integrated as [`pipeline`](https://huggingface.co/docs/transformers/en/main_classes/pipelines). The new features includes
62
+ (i) improved timestamp achieved by [stable-ts](https://github.com/jianfch/stable-ts) and (ii) adding punctuation with [punctuators](https://github.com/1-800-BAD-CODE/punctuators/tree/main).
63
+ These libraries are merged into Kotoba-Whisper-v2.1 via pipeline and will be applied seamlessly to the predicted transcription from [kotoba-tech/kotoba-whisper-v2.0](https://huggingface.co/kotoba-tech/kotoba-whisper-v2.0).
64
+ The pipeline has been developed through the collaboration between [Asahi Ushio](https://asahiushio.com) and [Kotoba Technologies](https://twitter.com/kotoba_tech)
65
+
66
+
67
+ Following table presents the raw CER (unlike usual CER where the punctuations are removed before computing the metrics, see the evaluation script [here](https://huggingface.co/kotoba-tech/kotoba-whisper-v2.1/blob/main/run_short_form_eval.py))
68
+ along with the.
69
+
70
+
71
+ | model | CommonVoice 8.0 (Japanese) | JSUT Basic 5000 | ReazonSpeech Test |
72
+ |:---------------------------------------------------------|---------------------------------------:|-------------------------------------:|----------------------------------------:|
73
+ | kotoba-tech/kotoba-whisper-v2.0 | 15.6 | 15.2 | 17.8 |
74
+ | kotoba-tech/kotoba-whisper-v2.1 (punctuator + stable-ts) | 13.7 | ***11.2*** | ***17.4*** |
75
+ | kotoba-tech/kotoba-whisper-v2.1 (punctuator) | 13.9 | 11.4 | 18 |
76
+ | kotoba-tech/kotoba-whisper-v2.1 (stable-ts) | 15.7 | 15 | 17.7 |
77
+ | kotoba-tech/kotoba-whisper-v1.0 | 15.6 | 15.2 | 17.8 |
78
+ | kotoba-tech/kotoba-whisper-v1.1 (punctuator + stable-ts) | 13.7 | ***11.2*** | ***17.4*** |
79
+ | kotoba-tech/kotoba-whisper-v1.1 (punctuator) | 13.9 | 11.4 | 18 |
80
+ | kotoba-tech/kotoba-whisper-v1.1 (stable-ts) | 15.7 | 15 | 17.7 |
81
+ | openai/whisper-large-v3 | ***12.9*** | 13.4 | 20.6 |
82
+
83
+ Regarding to the normalized CER, since those update from v2.1 will be removed by the normalization, kotoba-tech/kotoba-whisper-v2.1 marks the same CER values as [kotoba-tech/kotoba-whisper-v2.0](https://huggingface.co/kotoba-tech/kotoba-whisper-v2.0).
84
+
85
+ ### Latency
86
+ Please refer to the section of the latency in the kotoba-whisper-v1.1 [here](https://huggingface.co/kotoba-tech/kotoba-whisper-v1.1#latency).
87
+
88
+ ## Transformers Usage
89
+ Kotoba-Whisper-v2.1 is supported in the Hugging Face πŸ€— Transformers library from version 4.39 onwards. To run the model, first
90
+ install the latest version of Transformers.
91
+
92
+ ```bash
93
+ pip install --upgrade pip
94
+ pip install --upgrade transformers accelerate torchaudio
95
+ pip install stable-ts==2.16.0
96
+ pip install punctuators==0.0.5
97
+ ```
98
+
99
+ ### Transcription
100
+ The model can be used with the [`pipeline`](https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.AutomaticSpeechRecognitionPipeline)
101
+ class to transcribe audio files as follows:
102
+
103
+ ```python
104
+ import torch
105
+ from transformers import pipeline
106
+ from datasets import load_dataset
107
+
108
+ # config
109
+ model_id = "kotoba-tech/kotoba-whisper-v2.1"
110
+ torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
111
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
112
+ model_kwargs = {"attn_implementation": "sdpa"} if torch.cuda.is_available() else {}
113
+ generate_kwargs = {"language": "japanese", "task": "transcribe"}
114
+
115
+ # load model
116
+ pipe = pipeline(
117
+ model=model_id,
118
+ torch_dtype=torch_dtype,
119
+ device=device,
120
+ model_kwargs=model_kwargs,
121
+ chunk_length_s=15,
122
+ batch_size=16,
123
+ trust_remote_code=True,
124
+ stable_ts=True,
125
+ punctuator=True
126
+ )
127
+
128
+ # load sample audio
129
+ dataset = load_dataset("japanese-asr/ja_asr.reazonspeech_test", split="test")
130
+ sample = dataset[0]["audio"]
131
+
132
+ # run inference
133
+ result = pipe(sample, return_timestamps=True, generate_kwargs=generate_kwargs)
134
+ print(result)
135
+ ```
136
+
137
+ - To transcribe a local audio file, simply pass the path to your audio file when you call the pipeline:
138
+ ```diff
139
+ - result = pipe(sample, return_timestamps=True, generate_kwargs=generate_kwargs)
140
+ + result = pipe("audio.mp3", return_timestamps=True, generate_kwargs=generate_kwargs)
141
+ ```
142
+
143
+ - To deactivate stable-ts:
144
+ ```diff
145
+ - stable_ts=True,
146
+ + stable_ts=False,
147
+ ```
148
+
149
+ - To deactivate punctuator:
150
+ ```diff
151
+ - punctuator=True,
152
+ + punctuator=False,
153
+ ```
154
+
155
+ ### Transcription with Prompt
156
+ Kotoba-whisper can generate transcription with prompting as below:
157
+
158
+ ```python
159
+ import re
160
+ import torch
161
+ from transformers import pipeline
162
+ from datasets import load_dataset
163
+
164
+ # config
165
+ model_id = "kotoba-tech/kotoba-whisper-v2.1"
166
+ torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
167
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
168
+ model_kwargs = {"attn_implementation": "sdpa"} if torch.cuda.is_available() else {}
169
+ generate_kwargs = {"language": "japanese", "task": "transcribe"}
170
+
171
+ # load model
172
+ pipe = pipeline(
173
+ model=model_id,
174
+ torch_dtype=torch_dtype,
175
+ device=device,
176
+ model_kwargs=model_kwargs,
177
+ chunk_length_s=15,
178
+ batch_size=16,
179
+ trust_remote_code=True
180
+ )
181
+
182
+ # load sample audio
183
+ dataset = load_dataset("japanese-asr/ja_asr.reazonspeech_test", split="test")
184
+
185
+ # --- Without prompt ---
186
+ text = pipe(dataset[10]["audio"], generate_kwargs=generate_kwargs)['text']
187
+ print(text)
188
+ # 81ζ­³γ€εŠ›εΌ·γ„θ΅°γ‚Šγ«ε€‰γ‚γ£γ¦γγΎγ™γ€‚
189
+
190
+ # --- With prompt ---: Let's change `81` to `91`.
191
+ prompt = "91ζ­³"
192
+ generate_kwargs['prompt_ids'] = pipe.tokenizer.get_prompt_ids(prompt, return_tensors="pt").to(device)
193
+ text = pipe(dataset[10]["audio"], generate_kwargs=generate_kwargs)['text']
194
+ # currently the pipeline for ASR appends the prompt at the beginning of the transcription, so remove it
195
+ text = re.sub(rf"\A\s*{prompt}\s*", "", text)
196
+ print(text)
197
+ # γ‚γ£γΆγ£γŸγ§γ‚‚γ‚Ήγƒ«γ‚¬γ•γ‚“γ€91ζ­³γ€εŠ›εΌ·γ„θ΅°γ‚Šγ«ε€‰γ‚γ£γ¦γγΎγ™γ€‚
198
+ ```
199
+
200
+ ### Flash Attention 2
201
+ We recommend using [Flash-Attention 2](https://huggingface.co/docs/transformers/main/en/perf_infer_gpu_one#flashattention-2)
202
+ if your GPU allows for it. To do so, you first need to install [Flash Attention](https://github.com/Dao-AILab/flash-attention):
203
+
204
+ ```
205
+ pip install flash-attn --no-build-isolation
206
+ ```
207
+
208
+ Then pass `attn_implementation="flash_attention_2"` to `from_pretrained`:
209
+
210
+ ```diff
211
+ - model_kwargs = {"attn_implementation": "sdpa"} if torch.cuda.is_available() else {}
212
+ + model_kwargs = {"attn_implementation": "flash_attention_2"} if torch.cuda.is_available() else {}
213
+ ```
214
+
215
+
216
+ ## Acknowledgements
217
+ * [OpenAI](https://openai.com/) for the Whisper [model](https://huggingface.co/openai/whisper-large-v3).
218
+ * Hugging Face πŸ€— [Transformers](https://github.com/huggingface/transformers) for the model integration.
219
+ * Hugging Face πŸ€— for the [Distil-Whisper codebase](https://github.com/huggingface/distil-whisper).
220
+ * [Reazon Human Interaction Lab](https://research.reazon.jp/) for the [ReazonSpeech dataset](https://huggingface.co/datasets/reazon-research/reazonspeech).