|
--- |
|
language: |
|
- en |
|
license: apache-2.0 |
|
library_name: span-marker |
|
tags: |
|
- token-classification |
|
- named-enity-recognition |
|
datasets: |
|
- DFKI-SLT/few-nerd |
|
pipeline_tag: token-classification |
|
base_model: roberta-base |
|
model-index: |
|
- name: span-marker-robert-base |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# span-marker-robert-base |
|
|
|
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on [few-nerd](https://huggingface.co/datasets/DFKI-SLT/few-nerd) dataset using [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) an module for NER. |
|
|
|
# Usage |
|
|
|
```python |
|
from span_marker import SpanMarkerModel |
|
|
|
model = SpanMarkerModel.from_pretrained("krinal/span-marker-robert-base") |
|
|
|
ner_result = model.predict("Argentine captain Lionel Messi won Golden Ball at FIFA world cup 2022") |
|
``` |
|
|
|
## Training and evaluation data |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 8 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 1 |
|
|
|
### Evaluation |
|
|
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0214 |
|
- Overall Precision: 0.7642 |
|
- Overall Recall: 0.7947 |
|
- Overall F1: 0.7791 |
|
- Overall Accuracy: 0.9397 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:-----------------:|:--------------:|:----------:|:----------------:| |
|
| 0.0214 | 0.08 | 100 | 0.0219 | 0.7641 | 0.7679 | 0.7660 | 0.9330 | |
|
| 0.0199 | 0.16 | 200 | 0.0243 | 0.7442 | 0.7679 | 0.7559 | 0.9348 | |
|
| 0.0179 | 0.24 | 300 | 0.0212 | 0.7730 | 0.7580 | 0.7654 | 0.9361 | |
|
| 0.0188 | 0.33 | 400 | 0.0225 | 0.7616 | 0.7710 | 0.7662 | 0.9343 | |
|
| 0.0149 | 0.41 | 500 | 0.0240 | 0.7537 | 0.7783 | 0.7658 | 0.9375 | |
|
| 0.015 | 0.49 | 600 | 0.0230 | 0.7540 | 0.7829 | 0.7682 | 0.9362 | |
|
| 0.0137 | 0.57 | 700 | 0.0232 | 0.7746 | 0.7538 | 0.7640 | 0.9319 | |
|
| 0.0123 | 0.65 | 800 | 0.0218 | 0.7651 | 0.7879 | 0.7763 | 0.9393 | |
|
| 0.0103 | 0.73 | 900 | 0.0223 | 0.7688 | 0.7964 | 0.7824 | 0.9397 | |
|
| 0.0108 | 0.82 | 1000 | 0.0209 | 0.7763 | 0.7816 | 0.7789 | 0.9397 | |
|
| 0.0116 | 0.9 | 1100 | 0.0213 | 0.7743 | 0.7879 | 0.7811 | 0.9398 | |
|
| 0.0119 | 0.98 | 1200 | 0.0214 | 0.7653 | 0.7947 | 0.7797 | 0.9400 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.30.2 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.13.1 |
|
- Tokenizers 0.13.3 |
|
- span-marker 1.2.3 |