krzonkalla's picture
Update README.md
5674187 verified
|
raw
history blame
1.18 kB
metadata
license: apache-2.0
pipeline_tag: image-classification

Skin Cancer Image Classification Model

Introduction

Esse modelo classifica imagens de pele em várias categorias, com o objetivo de detectar lesões cancerígenas

Model Overview

  • Arquitetura: Vision Transformer (ViT)
  • Modelo Pré-treinado: Google's ViT 16x16 treinado no dataset ImageNet21k
  • Classification Head Modificada: A classification head foi trocado para adaptar melhor o modelo à nova tarefa

Dataset

  • Nome do Dataset: Skin Cancer Dataset HAM10000
  • Classes: Benign keratosis-like lesions, Basal cell carcinoma, Actinic keratoses, Vascular lesions, Melanocytic nevi, Melanoma, Dermatofibroma

Training

  • Optimizer: Adam optimizer with a learning rate of 1e-4
  • Loss Function: Cross-Entropy Loss
  • Batch Size: 32
  • Number of Epochs: 5

Evaluation Metrics

  • Train Loss: Average loss over the training dataset
  • Train Accuracy: Accuracy over the training dataset
  • Validation Loss: Average loss over the validation dataset
  • Validation Accuracy: Accuracy over the validation dataset

Results

  • Train Loss: 0.1208
  • Train Accuracy: 0.9614
  • Val Loss: 0.1000
  • Val Accuracy: 0.9695