|
--- |
|
license: apache-2.0 |
|
pipeline_tag: image-classification |
|
--- |
|
# Skin Cancer Image Classification Model |
|
|
|
## Introduction |
|
|
|
Esse modelo classifica imagens de pele em várias categorias, com o objetivo de detectar lesões cancerígenas |
|
|
|
## Model Overview |
|
|
|
- Arquitetura: Vision Transformer (ViT) |
|
- Modelo Pré-treinado: Google's ViT 16x16 treinado no dataset ImageNet21k |
|
- Classification Head Modificada: A classification head foi trocado para adaptar melhor o modelo à nova tarefa |
|
|
|
## Dataset |
|
|
|
- Nome do Dataset: Skin Cancer Dataset HAM10000 |
|
- Classes: Benign keratosis-like lesions, Basal cell carcinoma, Actinic keratoses, Vascular lesions, Melanocytic nevi, Melanoma, Dermatofibroma |
|
|
|
## Training |
|
|
|
- Optimizer: Adam optimizer with a learning rate of 1e-4 |
|
- Loss Function: Cross-Entropy Loss |
|
- Batch Size: 32 |
|
- Number of Epochs: 5 |
|
|
|
## Evaluation Metrics |
|
|
|
- Train Loss: Average loss over the training dataset |
|
- Train Accuracy: Accuracy over the training dataset |
|
- Validation Loss: Average loss over the validation dataset |
|
- Validation Accuracy: Accuracy over the validation dataset |
|
|
|
## Results |
|
|
|
- Train Loss: 0.1208 |
|
- Train Accuracy: 0.9614 |
|
- Val Loss: 0.1000 |
|
- Val Accuracy: 0.9695 |