whisper-small-nl / README.md
kvanberendonck-bethel's picture
End of training
a6aa623 verified
---
language:
- nl
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper small nl - Michel Mesquita
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 11.0
type: mozilla-foundation/common_voice_11_0
config: nl
split: None
args: 'config: nl, split: test'
metrics:
- name: Wer
type: wer
value: 1.8285558498208443
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper small nl - Michel Mesquita
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0321
- Wer: 1.8286
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 0.1097 | 0.4685 | 1000 | 0.1142 | 7.6755 |
| 0.0724 | 0.9370 | 2000 | 0.0621 | 4.0514 |
| 0.0307 | 1.4055 | 3000 | 0.0412 | 2.6727 |
| 0.0285 | 1.8740 | 4000 | 0.0321 | 1.8286 |
### Framework versions
- Transformers 4.44.0
- Pytorch 2.3.1+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1