PlatYi-34B-Llama-Q

Model Details

Model Developers Kyujin Han (kyujinpy)

Input Models input text only.

Output Models generate text only.

Model Architecture
PlatYi-34B-Llama-Q is an auto-regressive language model based on the Yi-34B transformer architecture.

Blog Link
Blog: [Coming soon...]
Github: [Coming soon...]

Base Model
chargoddard/Yi-34B-Llama

Training Dataset
garage-bAInd/Open-Platypus.

Notice

While training, I used Q-LoRA. The lora_r values is 64.

Model Benchmark

Open leaderboard

  • Follow up as link.
Model Average ARC HellaSwag MMLU TruthfulQA Winogrande GSM8K
PlatYi-34B-Llama-Q 71.13 65.70 85.22 78.78 53.64 83.03 60.42
PlatYi-34B-Llama 68.37 67.83 85.35 78.26 53.46 82.87 42.46
Yi-34B-Llama 70.95 64.59 85.63 76.31 55.60 82.79 60.80
Yi-34B 69.42 64.59 85.69 76.35 56.23 83.03 50.64

Implementation Code

### KO-Platypus
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

repo = "kyujinpy/PlatYi-34B-Llama-Q"
OpenOrca = AutoModelForCausalLM.from_pretrained(
        repo,
        return_dict=True,
        torch_dtype=torch.float16,
        device_map='auto'
)
OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo)

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 71.13
AI2 Reasoning Challenge (25-Shot) 65.70
HellaSwag (10-Shot) 85.22
MMLU (5-Shot) 78.78
TruthfulQA (0-shot) 53.64
Winogrande (5-shot) 83.03
GSM8k (5-shot) 60.42
Downloads last month
830
Safetensors
Model size
34.4B params
Tensor type
FP16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for kyujinpy/PlatYi-34B-Llama-Q

Quantizations
3 models

Dataset used to train kyujinpy/PlatYi-34B-Llama-Q

Evaluation results