SOLAR-Platypus-10.7B-v2
Model Details
Model Developers Kyujin Han (kyujinpy)
Input Models input text only.
Output Models generate text only.
Model Architecture
SOLAR-Platypus-10.7B-v2 is an auto-regressive language model based on the Llama2 architecture.
Base Model
upstage/SOLAR-10.7B-v1.0
Training Dataset
garage-bAInd/Open-Platypus.
Notice
While training, I used Q-LoRA.
The lora_r values is 64.
Q-LoRA config
- LoRA_r: 64
- LoRA_alpha: 16
- LoRA_dropout: 0.05
- LoRA_target_modules: [gate_proj, up_proj, down_proj, q_proj, k_proj, v_proj]
Prompt
## Human:
## Assistant:
Model Benchmark
Open leaderboard
- Follow up as link.
Model | Average | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8K |
---|---|---|---|---|---|---|---|
SOLAR-Platypus-10.7B-v1 | 58.62 | 61.69 | 84.23 | 60.37 | 51.58 | 82.79 | 11.07 |
SOLAR-Platypus-10.7B-v2 | 55.25 | 59.39 | 83.57 | 59.93 | 43.15 | 81.45 | 4.02 |
upstage/SOLAR-10.7B-v1.0 | 66.04 | 61.95 | 84.60 | 65.48 | 45.04 | 83.66 | 55.50 |
Implementation Code
### KO-Platypus
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
repo = "kyujinpy/SOLAR-Platypus-10.7B-v2"
OpenOrca = AutoModelForCausalLM.from_pretrained(
repo,
return_dict=True,
torch_dtype=torch.float16,
device_map='auto'
)
OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo)
- Downloads last month
- 735
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.