metadata
license: apache-2.0
datasets:
- lambdasec/cve-single-line-fixes
- lambdasec/gh-top-1000-projects-vulns
language:
- code
tags:
- code
programming_language:
- Java
- JavaScript
- Python
inference: false
model-index:
- name: SantaFixer
results:
- task:
type: text-generation
dataset:
type: openai/human-eval-infilling
name: HumanEval
metrics:
- name: single-line infilling pass@1
type: pass@1
value: 0.47
verified: false
- name: single-line infilling pass@10
type: pass@10
value: 0.74
verified: false
- task:
type: text-generation
dataset:
type: lambdasec/gh-top-1000-projects-vulns
name: GH Top 1000 Projects Vulnerabilities
metrics:
- name: pass@1 (Java)
type: pass@1
value: 0.26
verified: false
- name: pass@10 (Java)
type: pass@10
value: 0.48
verified: false
- name: pass@1 (Python)
type: pass@1
value: 0.31
verified: false
- name: pass@10 (Python)
type: pass@10
value: 0.56
verified: false
- name: pass@1 (JavaScript)
type: pass@1
value: 0.36
verified: false
- name: pass@10 (JavaScript)
type: pass@10
value: 0.62
verified: false
Model Card for SantaFixer
This is a LLM for code that is focussed on generating bug fixes using infilling.
Model Details
Model Description
- Developed by: codelion
- Model type: GPT-2
- Finetuned from model: bigcode/santacoder
How to Get Started with the Model
Use the code below to get started with the model.
# pip install -q transformers
from transformers import AutoModelForCausalLM, AutoTokenizer
checkpoint = "lambdasec/santafixer"
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForCausalLM.from_pretrained(checkpoint,
trust_remote_code=True).to(device)
input_text = "<fim-prefix>def print_hello_world():\n
<fim-suffix>\n print('Hello world!')
<fim-middle>"
inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
outputs = model.generate(inputs)
print(tokenizer.decode(outputs[0]))
Training Details
- GPU: Tesla P100
- Time: ~5 hrs
Training Data
The model was fine-tuned on the CVE single line fixes dataset
Training Procedure
Supervised Fine Tuning (SFT)
Training Hyperparameters
- optim: adafactor
- gradient_accumulation_steps: 4
- gradient_checkpointing: true
- fp16: false
Evaluation
The model was tested with the GitHub top 1000 projects vulnerabilities dataset