|
```py |
|
from diffusers import UNet2DConditionModel, DiffusionPipeline, LCMScheduler |
|
|
|
unet = UNet2DConditionModel.from_pretrained("latent-consistency/lcm-sdxl", torch_dtype=torch.float16, variant="fp16") |
|
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", unet=unet, torch_dtype=torch.float16, variant="fp16") |
|
|
|
pipe.scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
prompt = "a red car standing on the side of the street" |
|
|
|
image = pipe(prompt, num_inference_steps=4, guidance_scale=8.0).images[0] |
|
``` |