text_shortening_model_v11

This model is a fine-tuned version of t5-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.9156
  • Rouge1: 0.594
  • Rouge2: 0.3771
  • Rougel: 0.551
  • Rougelsum: 0.5514
  • Bert precision: 0.8963
  • Bert recall: 0.9029
  • Average word count: 11.1857
  • Max word count: 16
  • Min word count: 5
  • Average token count: 16.3143
  • % shortened texts with length > 12: 22.1429

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Bert precision Bert recall Average word count Max word count Min word count Average token count % shortened texts with length > 12
2.0573 1.0 31 1.6178 0.5605 0.3244 0.5037 0.5044 0.8826 0.8913 11.8 18 5 16.7571 44.2857
1.7151 2.0 62 1.5328 0.5713 0.3452 0.5232 0.5216 0.8855 0.8987 11.85 17 4 16.9571 45.7143
1.5849 3.0 93 1.4792 0.5806 0.3545 0.53 0.5289 0.8893 0.9002 11.6071 17 4 16.7571 42.8571
1.4642 4.0 124 1.4520 0.578 0.3468 0.5275 0.5269 0.8846 0.8994 12.1357 17 6 17.3786 46.4286
1.4162 5.0 155 1.4107 0.5887 0.3596 0.5412 0.5406 0.8892 0.901 11.8071 17 6 17.1 40.0
1.3163 6.0 186 1.4050 0.5888 0.3526 0.5348 0.5341 0.8905 0.9007 11.5071 16 6 16.8929 36.4286
1.255 7.0 217 1.4007 0.5793 0.3523 0.5315 0.53 0.8882 0.898 11.4857 15 6 16.9357 32.1429
1.2007 8.0 248 1.4018 0.6041 0.3743 0.5561 0.5552 0.8936 0.9044 11.65 16 7 16.95 32.8571
1.1432 9.0 279 1.3913 0.5969 0.3688 0.5481 0.5474 0.8907 0.9036 11.8786 16 6 17.1929 41.4286
1.1011 10.0 310 1.3961 0.5895 0.3541 0.5379 0.5365 0.8887 0.9022 11.9571 17 6 17.2857 39.2857
1.0608 11.0 341 1.3965 0.601 0.3676 0.551 0.5493 0.8912 0.9039 11.9143 17 7 17.2643 37.1429
1.0194 12.0 372 1.4092 0.5968 0.3691 0.5485 0.5479 0.896 0.9016 11.0571 15 6 16.2857 24.2857
0.9875 13.0 403 1.4105 0.6002 0.3748 0.5525 0.5519 0.8929 0.9034 11.5357 17 7 16.8643 29.2857
0.9369 14.0 434 1.4121 0.593 0.3658 0.5478 0.5476 0.896 0.903 11.15 16 6 16.4286 25.0
0.9258 15.0 465 1.4079 0.5956 0.3658 0.5434 0.543 0.8912 0.9025 11.6643 16 6 16.9786 31.4286
0.8838 16.0 496 1.4202 0.597 0.3662 0.5468 0.5464 0.8925 0.9041 11.4786 16 7 16.9429 27.8571
0.8615 17.0 527 1.4250 0.5936 0.3618 0.544 0.5434 0.8917 0.9028 11.5 17 7 16.9286 27.8571
0.8359 18.0 558 1.4392 0.5921 0.3726 0.5459 0.5451 0.8911 0.9019 11.5 16 7 16.8571 27.8571
0.7951 19.0 589 1.4446 0.5875 0.3687 0.5431 0.542 0.8904 0.9008 11.5143 16 7 16.8643 27.8571
0.7773 20.0 620 1.4564 0.5917 0.3678 0.5472 0.5471 0.892 0.9028 11.5286 16 7 16.7286 30.7143
0.7597 21.0 651 1.4609 0.587 0.3659 0.5436 0.5423 0.8907 0.9025 11.7429 16 7 17.0214 31.4286
0.7276 22.0 682 1.4723 0.5992 0.3824 0.5573 0.5569 0.8957 0.9016 11.0857 16 7 16.3357 20.7143
0.6884 23.0 713 1.4759 0.5919 0.3749 0.5502 0.5494 0.8946 0.9037 11.4143 16 6 16.7357 25.7143
0.6689 24.0 744 1.4953 0.5872 0.3741 0.5479 0.5465 0.8964 0.9001 10.9714 16 6 16.0786 20.7143
0.6634 25.0 775 1.5111 0.5985 0.3802 0.5565 0.5563 0.8948 0.9037 11.4 16 7 16.7214 25.7143
0.6451 26.0 806 1.5194 0.5895 0.3676 0.545 0.5442 0.8945 0.9002 11.2571 16 6 16.4857 21.4286
0.6309 27.0 837 1.5287 0.5857 0.3642 0.5445 0.5435 0.8942 0.9007 11.3357 16 7 16.5714 22.1429
0.615 28.0 868 1.5374 0.5969 0.3817 0.5547 0.5546 0.8982 0.9028 11.0857 17 6 16.2 20.0
0.6094 29.0 899 1.5423 0.593 0.3746 0.5506 0.5501 0.8951 0.902 11.3429 16 7 16.5571 25.7143
0.5757 30.0 930 1.5376 0.5916 0.3769 0.5479 0.5473 0.8976 0.9013 11.0143 16 7 16.1143 20.7143
0.5633 31.0 961 1.5586 0.5976 0.3852 0.5577 0.5571 0.8987 0.9034 11.15 16 7 16.2214 21.4286
0.5437 32.0 992 1.5716 0.5978 0.3843 0.5566 0.5556 0.8982 0.9043 11.1929 16 7 16.3 24.2857
0.545 33.0 1023 1.5776 0.5915 0.38 0.5505 0.549 0.8977 0.9011 11.0143 16 6 16.1 18.5714
0.5254 34.0 1054 1.5979 0.5847 0.3731 0.5442 0.5436 0.8978 0.9 10.9857 16 6 15.9429 20.0
0.5243 35.0 1085 1.6012 0.5983 0.3829 0.5551 0.5542 0.8986 0.9047 11.1714 16 6 16.3786 21.4286
0.5075 36.0 1116 1.5938 0.5906 0.3857 0.5501 0.5494 0.898 0.9041 11.2214 16 6 16.3786 22.1429
0.484 37.0 1147 1.6196 0.5952 0.3858 0.5548 0.555 0.8991 0.9031 11.0357 16 6 16.1429 19.2857
0.4797 38.0 1178 1.6349 0.5988 0.3861 0.5586 0.5582 0.9005 0.9041 10.9929 16 7 16.1357 17.8571
0.4693 39.0 1209 1.6353 0.5953 0.3927 0.5567 0.5571 0.8988 0.9038 11.1 16 7 16.2429 23.5714
0.4575 40.0 1240 1.6395 0.5907 0.3825 0.5518 0.5517 0.8979 0.9024 11.0571 16 7 16.1143 20.0
0.4376 41.0 1271 1.6676 0.5891 0.3869 0.5508 0.5511 0.8967 0.902 11.2357 16 7 16.3643 24.2857
0.4302 42.0 1302 1.6788 0.5937 0.3827 0.5511 0.5512 0.8987 0.9022 11.0214 16 7 16.1357 20.7143
0.4279 43.0 1333 1.6796 0.601 0.3873 0.5583 0.558 0.899 0.9025 11.1071 16 7 16.2071 23.5714
0.4222 44.0 1364 1.6884 0.6077 0.3944 0.565 0.5652 0.9017 0.9051 10.8929 15 6 16.0071 17.1429
0.4203 45.0 1395 1.6932 0.5978 0.3837 0.5578 0.557 0.8977 0.9031 11.1357 16 7 16.25 18.5714
0.4145 46.0 1426 1.7017 0.6084 0.3855 0.5632 0.5633 0.9006 0.9057 11.1357 16 7 16.2857 18.5714
0.3957 47.0 1457 1.6958 0.5969 0.3857 0.5579 0.5575 0.8979 0.9039 11.2429 16 7 16.3643 20.7143
0.3943 48.0 1488 1.7099 0.5891 0.3802 0.5482 0.5472 0.8982 0.9018 11.0286 16 7 16.0929 17.1429
0.3808 49.0 1519 1.7259 0.6003 0.3818 0.558 0.5583 0.8988 0.9031 11.1214 16 7 16.2857 19.2857
0.3746 50.0 1550 1.7252 0.5904 0.3749 0.5481 0.5483 0.8975 0.9012 11.0571 16 7 16.2214 17.1429
0.3743 51.0 1581 1.7394 0.5948 0.3789 0.5537 0.5539 0.8995 0.9048 11.25 16 7 16.3786 22.1429
0.3652 52.0 1612 1.7568 0.5934 0.3777 0.5492 0.549 0.8986 0.9022 11.0714 16 6 16.1714 18.5714
0.3676 53.0 1643 1.7608 0.5941 0.378 0.5562 0.5562 0.8996 0.9034 11.0571 17 7 16.1214 18.5714
0.3505 54.0 1674 1.7593 0.5934 0.3759 0.5522 0.5527 0.8985 0.9027 11.1143 16 7 16.0857 18.5714
0.3343 55.0 1705 1.7625 0.587 0.3749 0.5451 0.5455 0.8976 0.9009 11.0429 17 6 16.0929 17.8571
0.3471 56.0 1736 1.7744 0.5866 0.3738 0.5473 0.5468 0.8959 0.9005 11.1429 17 6 16.2571 19.2857
0.3396 57.0 1767 1.7778 0.5884 0.3753 0.5459 0.5459 0.8963 0.9009 11.1071 16 6 16.1714 19.2857
0.3313 58.0 1798 1.7836 0.5915 0.3743 0.5494 0.5491 0.8963 0.9017 11.1071 16 7 16.1571 20.0
0.3211 59.0 1829 1.7980 0.5935 0.3772 0.5536 0.554 0.8962 0.9033 11.25 17 7 16.3357 21.4286
0.3126 60.0 1860 1.8001 0.5979 0.3809 0.5553 0.5556 0.8968 0.9021 11.1643 17 6 16.2929 20.7143
0.3078 61.0 1891 1.8163 0.5939 0.3795 0.552 0.5521 0.8972 0.9026 11.1429 17 6 16.2786 22.8571
0.3007 62.0 1922 1.8209 0.6037 0.3886 0.5609 0.5619 0.8976 0.9051 11.2786 17 6 16.4571 23.5714
0.2969 63.0 1953 1.8165 0.5829 0.3693 0.5406 0.5407 0.8956 0.8988 10.9714 16 6 16.0143 19.2857
0.2886 64.0 1984 1.8299 0.5921 0.3754 0.5482 0.5483 0.8968 0.8997 11.0143 16 6 16.1214 18.5714
0.2942 65.0 2015 1.8299 0.5965 0.3707 0.5491 0.5483 0.8967 0.9024 11.2071 16 6 16.3571 22.1429
0.2991 66.0 2046 1.8329 0.5911 0.3789 0.5519 0.5512 0.8968 0.902 11.0857 16 6 16.2786 21.4286
0.2926 67.0 2077 1.8361 0.5975 0.3845 0.5559 0.5552 0.8985 0.9032 11.05 17 6 16.3071 20.7143
0.2888 68.0 2108 1.8442 0.5993 0.3855 0.5581 0.5582 0.8984 0.9042 11.1143 16 6 16.2929 22.1429
0.2851 69.0 2139 1.8479 0.597 0.3805 0.5534 0.5535 0.8974 0.9036 11.1 16 6 16.35 20.0
0.2704 70.0 2170 1.8532 0.5918 0.3746 0.5475 0.5461 0.8969 0.9027 11.15 16 6 16.3571 20.7143
0.269 71.0 2201 1.8584 0.594 0.3789 0.5534 0.553 0.8981 0.9039 11.1143 17 6 16.3286 19.2857
0.2738 72.0 2232 1.8590 0.5967 0.3833 0.5555 0.5552 0.8985 0.9041 11.0714 16 6 16.3286 17.8571
0.2644 73.0 2263 1.8656 0.5952 0.3801 0.5506 0.5506 0.8981 0.9029 11.0857 16 6 16.2714 20.0
0.2647 74.0 2294 1.8744 0.5995 0.384 0.5573 0.5571 0.8989 0.9049 11.2214 17 6 16.4429 22.1429
0.2678 75.0 2325 1.8825 0.6055 0.3886 0.563 0.5635 0.8992 0.9056 11.2786 16 6 16.4857 22.8571
0.2647 76.0 2356 1.8805 0.6024 0.3849 0.5605 0.5609 0.8996 0.9055 11.1357 17 6 16.3286 20.0
0.2535 77.0 2387 1.8865 0.5981 0.3932 0.5605 0.5612 0.8994 0.9045 11.1143 17 5 16.3 20.7143
0.2561 78.0 2418 1.8878 0.5961 0.3852 0.5558 0.5567 0.8991 0.9035 11.0643 16 5 16.2786 20.0
0.2586 79.0 2449 1.8910 0.5972 0.3881 0.5615 0.5615 0.8974 0.9033 11.1643 17 5 16.35 22.1429
0.2501 80.0 2480 1.8921 0.5929 0.3819 0.5529 0.5536 0.8958 0.9026 11.2214 16 5 16.4357 24.2857
0.2557 81.0 2511 1.8949 0.5941 0.3833 0.5535 0.5537 0.8956 0.9028 11.2643 17 5 16.4214 24.2857
0.2436 82.0 2542 1.8973 0.5916 0.3838 0.5525 0.5533 0.8958 0.9033 11.2786 17 5 16.4571 22.8571
0.2463 83.0 2573 1.8962 0.5915 0.3806 0.5533 0.5536 0.8955 0.9028 11.2143 16 5 16.4643 22.8571
0.2388 84.0 2604 1.8987 0.5945 0.3845 0.5568 0.5565 0.8968 0.9035 11.1429 17 5 16.3714 22.1429
0.2389 85.0 2635 1.9019 0.5957 0.3819 0.5546 0.5542 0.8971 0.9038 11.1929 16 5 16.3786 22.1429
0.2392 86.0 2666 1.9026 0.5928 0.3801 0.5522 0.5518 0.8969 0.9035 11.2143 16 5 16.4143 21.4286
0.2387 87.0 2697 1.9062 0.5907 0.3751 0.5496 0.549 0.8962 0.9028 11.1714 16 5 16.3286 20.7143
0.2403 88.0 2728 1.9064 0.5952 0.3779 0.5512 0.5512 0.8966 0.904 11.2643 16 5 16.4643 22.8571
0.2368 89.0 2759 1.9098 0.5995 0.387 0.5586 0.5588 0.8977 0.9044 11.1714 16 5 16.3786 20.0
0.2416 90.0 2790 1.9115 0.6007 0.3872 0.5595 0.5606 0.8982 0.9047 11.1857 16 5 16.3429 21.4286
0.2328 91.0 2821 1.9128 0.5997 0.3865 0.5574 0.558 0.8978 0.9039 11.1357 16 5 16.3357 21.4286
0.2389 92.0 2852 1.9151 0.5973 0.3864 0.5563 0.5576 0.8978 0.9032 11.0571 16 5 16.2071 20.0
0.2358 93.0 2883 1.9152 0.5952 0.3827 0.5529 0.5535 0.8974 0.903 11.0786 16 5 16.2286 20.0
0.233 94.0 2914 1.9155 0.6001 0.3861 0.5581 0.5585 0.8984 0.904 11.0929 16 5 16.3 20.7143
0.2293 95.0 2945 1.9146 0.5995 0.3845 0.5561 0.5572 0.8981 0.9038 11.1 16 5 16.2857 22.1429
0.2334 96.0 2976 1.9149 0.5963 0.3779 0.5518 0.5521 0.8975 0.9032 11.1214 16 5 16.3 21.4286
0.2334 97.0 3007 1.9153 0.5969 0.3813 0.554 0.5541 0.8978 0.9036 11.1429 16 5 16.3071 22.1429
0.237 98.0 3038 1.9150 0.5948 0.3803 0.5524 0.5528 0.8973 0.9031 11.1429 16 5 16.2643 22.1429
0.227 99.0 3069 1.9154 0.5946 0.3776 0.5509 0.5513 0.8969 0.903 11.1571 16 5 16.2786 22.1429
0.2357 100.0 3100 1.9156 0.594 0.3771 0.551 0.5514 0.8963 0.9029 11.1857 16 5 16.3143 22.1429

Framework versions

  • Transformers 4.33.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.4
  • Tokenizers 0.13.3
Downloads last month
1
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ldos/text_shortening_model_v11

Base model

google-t5/t5-small
Finetuned
(1672)
this model