text_shortening_model_v13

This model is a fine-tuned version of t5-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.0548
  • Rouge1: 0.5772
  • Rouge2: 0.3353
  • Rougel: 0.5189
  • Rougelsum: 0.5189
  • Bert precision: 0.8941
  • Bert recall: 0.8987
  • Average word count: 11.2143
  • Max word count: 15
  • Min word count: 6
  • Average token count: 16.5071
  • % shortened texts with length > 12: 30.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 60

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Bert precision Bert recall Average word count Max word count Min word count Average token count % shortened texts with length > 12
1.1544 1.0 62 1.6383 0.5496 0.3173 0.5011 0.5016 0.8821 0.8901 11.7214 17 4 17.0214 50.0
1.0203 2.0 124 1.5337 0.569 0.3214 0.5114 0.5112 0.8863 0.8968 11.9857 17 5 17.2214 50.7143
0.9474 3.0 186 1.5169 0.5754 0.3283 0.5196 0.5186 0.8874 0.8985 12.0857 17 6 17.2571 53.5714
0.8615 4.0 248 1.5058 0.5785 0.3368 0.5211 0.5198 0.8917 0.9006 11.7 17 6 16.8714 47.8571
0.8182 5.0 310 1.4855 0.5817 0.3284 0.5203 0.5195 0.8907 0.9 11.7357 17 6 16.9357 46.4286
0.784 6.0 372 1.4813 0.5862 0.3398 0.5242 0.5242 0.8918 0.9016 11.7 16 6 17.0 45.0
0.7749 7.0 434 1.4723 0.581 0.334 0.5241 0.5233 0.8951 0.8984 11.1929 16 6 16.3286 32.1429
0.7396 8.0 496 1.4936 0.5791 0.3402 0.5184 0.5183 0.8933 0.8992 11.4786 17 6 16.5571 34.2857
0.6856 9.0 558 1.5083 0.5757 0.3364 0.5174 0.5172 0.8944 0.8979 11.2 16 6 16.2357 30.7143
0.6679 10.0 620 1.5295 0.5814 0.3399 0.5271 0.5276 0.8915 0.9 11.7786 16 7 16.9143 40.0
0.6506 11.0 682 1.5363 0.5829 0.3491 0.5282 0.5283 0.8953 0.8994 11.3786 16 6 16.5286 33.5714
0.6521 12.0 744 1.5526 0.5645 0.3303 0.5095 0.5096 0.8914 0.8951 11.2286 16 5 16.4929 30.7143
0.6125 13.0 806 1.5787 0.5709 0.324 0.5097 0.5108 0.8906 0.8953 11.4214 16 6 16.6571 35.0
0.5915 14.0 868 1.5946 0.5757 0.3373 0.5152 0.5159 0.8926 0.8969 11.4071 16 6 16.5571 32.8571
0.5737 15.0 930 1.6204 0.577 0.3322 0.5219 0.5223 0.8918 0.8986 11.5929 16 6 16.8214 35.7143
0.5812 16.0 992 1.6372 0.5748 0.3243 0.52 0.5203 0.891 0.8977 11.6071 16 7 16.8214 37.8571
0.5468 17.0 1054 1.6514 0.5673 0.3304 0.5152 0.5152 0.895 0.8954 11.0 15 5 15.9929 26.4286
0.56 18.0 1116 1.6630 0.576 0.3273 0.5229 0.5228 0.8907 0.898 11.5786 16 6 16.8429 35.0
0.5548 19.0 1178 1.6868 0.5739 0.3262 0.5139 0.5135 0.8923 0.8972 11.3429 16 6 16.5929 33.5714
0.5338 20.0 1240 1.6954 0.5702 0.3295 0.518 0.5182 0.8914 0.8975 11.6 16 6 16.7429 37.8571
0.5323 21.0 1302 1.7255 0.585 0.3376 0.5262 0.5266 0.8938 0.9007 11.5643 16 6 16.7429 35.0
0.5075 22.0 1364 1.7320 0.5708 0.3272 0.5137 0.5144 0.8929 0.8953 11.3286 16 6 16.4143 32.1429
0.4916 23.0 1426 1.7601 0.5724 0.3276 0.5161 0.5171 0.8928 0.8965 11.3357 16 6 16.6 31.4286
0.4789 24.0 1488 1.7779 0.5726 0.3253 0.5128 0.513 0.8934 0.8964 11.4143 16 6 16.5 35.0
0.4851 25.0 1550 1.7970 0.575 0.3318 0.5204 0.521 0.8935 0.8982 11.4429 16 6 16.6714 31.4286
0.4682 26.0 1612 1.8094 0.5783 0.3376 0.5203 0.5213 0.8937 0.8984 11.4714 16 6 16.7571 30.0
0.4703 27.0 1674 1.8299 0.5814 0.3383 0.5208 0.5215 0.8934 0.8982 11.3929 16 6 16.6643 30.0
0.483 28.0 1736 1.8396 0.576 0.3394 0.5155 0.5162 0.8945 0.8975 11.3357 16 6 16.3857 28.5714
0.4712 29.0 1798 1.8567 0.5741 0.326 0.5125 0.5129 0.893 0.8981 11.5 16 6 16.5786 35.7143
0.4679 30.0 1860 1.8818 0.5855 0.3416 0.5239 0.5242 0.895 0.9005 11.4429 16 6 16.7143 33.5714
0.4653 31.0 1922 1.8758 0.5805 0.3378 0.5217 0.5222 0.894 0.8986 11.3357 16 6 16.4857 30.0
0.4484 32.0 1984 1.8920 0.5812 0.3363 0.5207 0.5206 0.8946 0.8991 11.3357 16 6 16.5143 30.0
0.4428 33.0 2046 1.8925 0.5832 0.3372 0.5195 0.5203 0.8968 0.8987 11.1286 16 6 16.2214 26.4286
0.4266 34.0 2108 1.9185 0.5736 0.3322 0.517 0.518 0.8952 0.8974 11.0214 15 6 16.1714 25.0
0.429 35.0 2170 1.9366 0.5829 0.3371 0.5224 0.5231 0.8965 0.8988 11.1643 16 6 16.25 27.1429
0.4034 36.0 2232 1.9510 0.5823 0.3392 0.5288 0.5288 0.8963 0.8986 11.1143 15 6 16.1214 30.0
0.4111 37.0 2294 1.9517 0.587 0.3426 0.529 0.5296 0.8959 0.9011 11.3857 16 6 16.55 31.4286
0.4318 38.0 2356 1.9450 0.5851 0.3444 0.5262 0.5268 0.8963 0.9009 11.2714 16 6 16.4571 30.0
0.4399 39.0 2418 1.9539 0.5772 0.3339 0.5164 0.5169 0.8958 0.8995 11.0929 15 6 16.2929 25.0
0.4268 40.0 2480 1.9620 0.5806 0.3319 0.5187 0.5188 0.8962 0.8983 11.0214 16 6 16.0643 26.4286
0.4119 41.0 2542 1.9939 0.5819 0.3408 0.5239 0.5238 0.8945 0.8992 11.3 16 6 16.4929 30.0
0.4061 42.0 2604 1.9714 0.5813 0.338 0.5214 0.5228 0.897 0.8997 11.05 16 6 16.2429 25.7143
0.4176 43.0 2666 1.9911 0.5847 0.3388 0.5266 0.5265 0.8951 0.9003 11.1929 16 6 16.4643 28.5714
0.4041 44.0 2728 2.0105 0.5844 0.3468 0.5257 0.5256 0.8957 0.901 11.1786 15 6 16.5357 29.2857
0.3925 45.0 2790 2.0220 0.5787 0.3423 0.5179 0.5185 0.8936 0.8992 11.25 16 6 16.5143 32.1429
0.4095 46.0 2852 2.0179 0.581 0.3404 0.5197 0.5202 0.8957 0.8998 11.2143 16 6 16.4357 29.2857
0.397 47.0 2914 2.0124 0.5803 0.3385 0.5188 0.5193 0.8952 0.899 11.2357 16 6 16.2786 32.1429
0.3801 48.0 2976 2.0186 0.5778 0.3359 0.518 0.518 0.8944 0.8986 11.2143 16 6 16.4 32.1429
0.3966 49.0 3038 2.0234 0.5807 0.337 0.5185 0.5192 0.8953 0.9001 11.2571 16 6 16.4929 30.0
0.3838 50.0 3100 2.0317 0.5807 0.3427 0.523 0.5234 0.8954 0.8989 11.0571 16 6 16.2786 26.4286
0.3818 51.0 3162 2.0281 0.5811 0.3428 0.5238 0.5242 0.8956 0.9001 11.1643 16 6 16.3643 30.7143
0.3793 52.0 3224 2.0399 0.5824 0.3438 0.5214 0.522 0.8947 0.9003 11.2071 16 6 16.4714 30.7143
0.3734 53.0 3286 2.0470 0.5811 0.3413 0.5222 0.5227 0.8952 0.9 11.1643 15 6 16.4214 29.2857
0.3876 54.0 3348 2.0509 0.5764 0.3382 0.515 0.5156 0.8948 0.8983 11.1071 15 6 16.2643 28.5714
0.3736 55.0 3410 2.0498 0.5722 0.3331 0.5135 0.514 0.8937 0.8972 11.1357 16 6 16.3071 27.8571
0.3981 56.0 3472 2.0499 0.5726 0.3337 0.5133 0.5138 0.8939 0.8977 11.1286 15 6 16.3357 29.2857
0.3731 57.0 3534 2.0500 0.5767 0.3353 0.5173 0.5176 0.8946 0.8984 11.1286 15 6 16.3643 27.8571
0.3786 58.0 3596 2.0529 0.5779 0.3377 0.5199 0.5208 0.895 0.8994 11.1929 16 6 16.4357 28.5714
0.3648 59.0 3658 2.0545 0.5766 0.3348 0.518 0.5181 0.8939 0.8985 11.2143 15 6 16.5143 30.0
0.373 60.0 3720 2.0548 0.5772 0.3353 0.5189 0.5189 0.8941 0.8987 11.2143 15 6 16.5071 30.0

Framework versions

  • Transformers 4.33.1
  • Pytorch 2.0.1+cpu
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
1
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ldos/text_shortening_model_v13

Base model

google-t5/t5-small
Finetuned
(1672)
this model