text_shortening_model_v2

This model is a fine-tuned version of t5-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4449
  • Rouge1: 0.581
  • Rouge2: 0.3578
  • Rougel: 0.5324
  • Rougelsum: 0.5317
  • Bert precision: 0.8885
  • Bert recall: 0.8981
  • Average word count: 11.5929
  • Max word count: 17
  • Min word count: 3
  • Average token count: 16.7071

Model description

No "summarize" prefix

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Bert precision Bert recall Average word count Max word count Min word count Average token count
1.7498 1.0 8 1.9424 0.4725 0.2644 0.4207 0.4216 0.8343 0.8502 11.7357 18 0 17.5143
1.5236 2.0 16 1.7731 0.5185 0.2961 0.4661 0.4665 0.8566 0.8646 11.05 18 0 16.6143
1.4381 3.0 24 1.6880 0.5459 0.3212 0.4947 0.4942 0.8773 0.8862 11.5857 18 3 16.8143
1.3895 4.0 32 1.6405 0.5537 0.3275 0.506 0.5061 0.8815 0.8894 11.7 18 3 16.6571
1.353 5.0 40 1.5941 0.5579 0.3347 0.5124 0.5119 0.8839 0.8933 11.7643 18 4 16.7429
1.3026 6.0 48 1.5568 0.5585 0.3379 0.5132 0.5129 0.8823 0.8945 11.9714 18 4 16.95
1.2624 7.0 56 1.5359 0.5696 0.3466 0.5202 0.5195 0.8837 0.897 12.0143 18 5 17.1143
1.2481 8.0 64 1.5186 0.5736 0.3517 0.5241 0.523 0.8849 0.898 12.0214 17 6 17.1714
1.2089 9.0 72 1.5055 0.5732 0.3499 0.5256 0.5246 0.8846 0.8979 12.0357 17 5 17.2214
1.1845 10.0 80 1.4898 0.5761 0.3548 0.5284 0.5276 0.886 0.8977 11.9 17 5 17.0786
1.1882 11.0 88 1.4787 0.5768 0.3573 0.5291 0.5288 0.8862 0.8986 11.8071 17 5 17.05
1.1649 12.0 96 1.4720 0.5784 0.3592 0.5319 0.531 0.8868 0.8988 11.7786 17 5 17.0
1.1643 13.0 104 1.4637 0.5785 0.3592 0.5314 0.5308 0.8875 0.8977 11.6571 17 3 16.8214
1.129 14.0 112 1.4565 0.5794 0.3585 0.5324 0.5315 0.8883 0.8984 11.6571 17 3 16.8
1.136 15.0 120 1.4516 0.5826 0.3598 0.537 0.5363 0.8898 0.8995 11.5857 17 3 16.6786
1.1191 16.0 128 1.4491 0.5828 0.3579 0.5357 0.535 0.8895 0.899 11.5929 17 3 16.6857
1.1192 17.0 136 1.4471 0.5794 0.355 0.5312 0.5307 0.8883 0.898 11.6143 17 3 16.7286
1.1085 18.0 144 1.4456 0.5808 0.3557 0.5315 0.5307 0.8883 0.8982 11.6286 17 3 16.7429
1.1063 19.0 152 1.4451 0.5808 0.3571 0.5321 0.5314 0.8884 0.8981 11.6 17 3 16.7143
1.0965 20.0 160 1.4449 0.581 0.3578 0.5324 0.5317 0.8885 0.8981 11.5929 17 3 16.7071

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.4
  • Tokenizers 0.13.3
Downloads last month
103
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ldos/text_shortening_model_v2

Base model

google-t5/t5-small
Finetuned
(1669)
this model